
Lecture#8

Deep Learning

Image Classification

• Image classification can be a difficult task

• Some of the challenges we have to face are:
– Viewpoint variation: an object can be oriented in many ways

– Scale varition: objects can vary in size

– Deformation: some objects can be deformed

– Occlusion: only a part of the object is visible

– Illumination conditions: lighting conditions can vary on an object

– Background clutter: object may blend into a cluttered background

– Intra-class variation: categories can be very broad, such as chair

Image Classification

Image Classification

• The dataset can also be very large with lots of categories:

Image Classification

• Each image also requires a lot of input values:

– Suppose we have an image of 248x400 pixels

– If the image is in color, we have one value Red, one for

Green, and one for Blue (RGB, 3 color channels)

– The image is made up of 248x400x3 values = 297600

values!

Deep Learning

Deep Learning

• Deep Learning means any deep neural network with
more than one hidden layer

• When we talk about deep learning, we often mean

specialized deep networks

• The most well known specialized DNN is the

Convolutional Neural Network

• This is what we shall focus on in this lecture

ConvNets (CNNs)

• ConvNets are very similar to traditional neural
networks:
– They are made up of units that have learnable weights and

biases

– Each unit performs a dot-product of the weights and inputs,

and possible ends with a non-linearity (such as the ReLU

function)

– The output layer maps inputs to a category

– They have a loss function (such as Softmax)

• So, what are the actual differences?

ConvNets

• ConvNets are only used if the input is images!

• This allows us to specialize the architecture for

images

• This makes the score function more efficient and
reduces the number of weights in the network

Regular NNs

• In regular NNs, the input is a vector which is
transformed through one ore more hidden layers

• Each layer is made up of units, and each unit is fully

connected to all units in the previous layer

• Each unit in a layer is independent of the other units

in the layer

• The last output layer maps inputs to categories

Regular NNs

• Regular NNs don’t scale well to images

• In the CIFAR-10 dataset, each image is 32x32 pixels in 3 color
channels

• A fully connected unit would then have 3072 weights

• Since the image recognition task is rather complex, we would

need a lot of units!

• If we have larger images, 200x200 pixels, each unit would

need 120000 weights!

• Learning all these weights would take a very long time!

ConvNets

• Images are 3-dimensional: width, height and depth
(color channels)

• Each layer in a ConvNet therefore arranges the units

in 3 dimensions

• Each unit is also only connected to a small region in

the previous layer (not fully connected)

• Each layer transforms the 3D input volume to a new
3D output volume

ConvNets

Regular 3-layer network

3-layer ConvNet

ConvNets

• A ConvNet is a sequence of layers, where each

layer transforms one 3D volume to another 3D

volume through some function

• There are three main types of layers to use:

– Convolutional Layer

– Pooling Layer

– Fully-Connected Layer (identical to regular NNs)

• A sequence of these layers forms a ConvNet
architecture

Convolutional Layer

• The Conv layer is the core block of ConvNets

• The Conv layer consist of a set of learnable filters

• Each filter is small along width and height but extends through

the full depth of the volume

• A typical filter in the first ConvNet layer can for example have

filters of 5x5x3 pixels

• During the forward pass, each filters slides across the width

and height of the input volume

• Dot products are computed between each filter and the input

volume at any position

Convolutional Layer

• As the filter slides over the width and height of the input

volume, a 2-dimensional activation map is produced

• It gives the response for the current filter at every spatial
position in the input volume

• The network will learn filters that activate when they see some

interesting visual feature such as an edge, specific color, or

more high-level features in later Conv layers

• The Conv layer will have a set of filters (for example 12), and

each filter produces a separate 2D activation map

• The activation maps are stacked along the depth dimension

and produces the output volume

Convolutional Layer

• Each unit is only connected to a local region of the input

volume

• This is referred to as the receptive field of the unit

• Example:

– We have CIFAR-10 images as input: 32x32x3 pixels

– The receptive field is 5x5

– Each unit will then have 5x5x3 weights = 75 weights (and 1 bias)

– This is much less than 3072 weights needed for a fully connected

unit

Convolutional Layer

32 32

32
5

32

3

Each 5x5x3 filter slides over every

pixel in the input volume

5 filters is used (output volume has depth 5)

Each filter produces 32x32 values

Convolutional Layer

32

32

3

32

32
5

Second filter slides over

the input volume

Convolutional Layer

32

32

3

32

32
5

Third filter slides over

the input volume

Hyperparameters

• The Conv layer has three hyperparameters: depth, stride and

zero-padding

• Depth:

– The depth of the output volume corresponds to the number of

filters we have

• Stride:

– Stride means how we slide each filter over the input volume

– In stride 1, the filter is moved one pixel at a time (covering all
pixels in the input volume)

– In stride 2, we jump 2 pixels (covering half of the pixels in the input

volume)

Hyperparameters

• Zero-padding:

– Along the borders of the input volume, some pixels in the volume
will be outside the input volume

– When zero-padding is used, we pad the input volume with zeros

around the border to avoid the out-of-bounds issue

– The parameter determines the size of the zero-padding

– The size shall be half the filter size for the filters to cover all pixels in

the input volume

• A 5x5 filter slides over a
volume with zero-
padding 2

0 0 0 0 0

0 0 0 0 0

0 0 45 76 77

0 0 53 83 87

0 0 55 86 90

0

0

83

92

95

0 0 56 85 89 95

Output volume

• The size of the output volume is determined by:

– The input volume size, W

– The receptive field size, F

– The stride, S

– The zero-padding, P

• The size (number of units) of the output volume will then be:

Output volume

• Example:

– Input volume is 32x32

– Filters are 5x5

– Stride is 1 and padding 0

– Output volume is then 28x28 pixels (and depth depends on

the number of filters we use)

Convolution

• Each depth slice uses the same weights (the

weights of the filter) regardless of position in the

input volume

• The forward pass can then be computed as a

convolution of the unit’s weights with the input

volume

• That’s why the layer is called a Conv layer

Depth
(3 colors)

1*1+2*1

= 3

1*-1+2*1+2*1

= 3

2*1+2*-1+1*-1

= -1

= 1

Σ= 6

Stride = 2

Padding = 1

Element-wise multiplication between

the input volume and filters (convolution)

Filter examples

• Examples of filters learned by Krizhevsky et al. in the ImageNet

challenge

• Each filter is 11x11 pixels and 3 color channels

• A total of 96 filters is used

Pooling Layer

• Pooling layers are inserted between Conv layers

• The purpose is to reduce the size of the volumes, which

reduces the number of weights needed and also controls

overfitting

• The pooling layer acts independently on every depth slice of

the input volume

• The width and height of each slice is reduced using the max

operation

Pooling Layer

• The most common type of pooling layer is to use 2x2
filters with a stride of 2

• This cuts the width and height in half, and reduces

activations with 75%

• The max operation takes the max value of 2x2 = 4

pixels

Pooling Layer

32

32

5

16

16
5

pooling

Pooling Layer

Fully-connected Layer

• A fully-connected layer works as the hidden layers in
a regular NN

• The activation is a matrix multiplication followed by a

bias offset

ReLU Layer

• We usually also write ReLU non-linearity as a layer

• It takes each value in the input volume, and

calculates ReLU activation of that value:

• No matrix operations are done in the ReLU layer

ConvNet Architectures

ConvNet Architectures

• A ConvNet is made up of:

– Conv layers (CONV)

– Pooling layers (POOL)

– Fully-connected layers (FC)

– ReLU non-linearity (RELU)

• The most common ConvNet architecture is:

– Stacking a few CONV-RELU layers

– Follow them with POOL layers

– When the volume is of small enough size, transition to FC layers

– The last layer is an output layer outputting a score for each

category

Example Architecture

ImageNet challenge

• The ImageNet challenge is an annual contest for image

classification and localization tasks

• The training dataset consists of 1.2 million images and 1000
possible categories

• The validation set for the challenge is a random subset of

50000 images

• Images can differ in size, but in average the resolution is

482x415 pixels

• ImageNet is the benchmark for

image classification systems

Standard Architectures

• There are several standardized architectures that have a name

• Some of them are:

– LeNet: the first successful ConvNet developed int he 1990’s

– AlexNet: won the ImageNet challenge in 2012 by a wide margin

– ZF Net: improvement of AlexNet that won the ImageNet challenge

2013

– GoogLeNet: 2014 years winner

– VGGNet: ended at second place in 2014 years ImageNet

challenge

• Let’s take a closer look at the VGGNet architecture:

Layer Volume size Description

INPUT 224x224x3 224x224 pixels and 3 color channels

CONV3-64 + ReLU 224x224x64 Conv layer with 64 3x3x3 filters

CONV3-64 + ReLU 224x224x64 Conv layer with 64 3x3x64 filters

POOL2 112x112x64 Standard 2x2 pooling layer with stride 2

CONV3-128 + ReLU 112x112x128 Conv layer with 128 3x3x64 filters

CONV3-128 + ReLU 112x112x128 Conv layer with 128 3x3x128 filters

POOL2 56x56x128 Standard 2x2 pooling layer with stride 2

CONV3-256 + ReLU 56x56x256 Conv layer with 256 3x3x128 filters

CONV3-256 + ReLU 56x56x256 Conv layer with 256 3x3x256 filters

CONV3-256 + ReLU 56x56x256 Conv layer with 256 3x3x256 filters

POOL2 28x28x256 Standard 2x2 pooling layer with stride 2

CONV3-512 + ReLU 28x28x512 Conv layer with 512 3x3x256 filters

CONV3-512 + ReLU 28x28x512 Conv layer with 512 3x3x512 filters

CONV3-512 + ReLU 28x28x512 Conv layer with 512 3x3x512 filters

POOL2 14x14x512 Standard 2x2 pooling layer with stride 2

CONV3-512 + ReLU 14x14x512 Conv layer with 512 3x3x512 filters

CONV3-512 + ReLU 14x14x512 Conv layer with 512 3x3x512 filters

CONV3-512 + ReLU 14x14x512 Conv layer with 512 3x3x512 filters

POOL2 7x7x512 Standard 2x2 pooling layer with stride 2

FC + ReLU 4096 Fully-connected layer with 4096 units

FC + ReLU 4096 Fully-connected layer with 4096 units

FC Softmax 1000 Output layer with 1000 possible categories

VGGNet

VGGNet

• In total VGGNet needs around 93 MB of memory per

image for the forward pass, and around twice that for the

backward pass

• In total the architecture has 138M parameters (weights

and biases)

• We need to use GPUs to efficiently train the architecture

• Memory can however be an issue on many GPUs and we

might need to use more memory-efficient architectures

Performance

• ConvNets have high memory and computational
requirements

• The most important hardware is a GPU that is

supported by the ConvNet library we use

• TensorFlow supports many Nvidia graphics cards,

but rarely (if any) cards from other brands

Example: MNIST

MNIST dataset

• Each image is 28x28 pixels and 1 color channel
(gray-scale)

• Training set of 60000 images

• Test set of 10000 images

• 10 categories

ConvNet for MNIST

Layer Volume size Description

INPUT 28x28x1 28x28 pixels and 1 color channel

CONV5-32 + ReLU 28x28x32 Conv layer with 32 5x5x1 filters

POOL2 14x14x32 Standard 2x2 pooling layer with stride 2

CONV5-64 + ReLU 14x14x64 Conv layer with 64 5x5x32 filters

POOL2 7x7x64 Standard 2x2 pooling layer with stride 2

FC 1024 Fully-connected layer with 1024 units

FC 10 Output layer with 10 possible categories

ConvNet in TensorFlow

• The script for creating and running the ConvNet on
the MNIST dataset in TensorFlow is available here:

– https://www.tensorflow.org/get_started/mnist/pros

• Training iterates 20000 times

• Each iteration trains on a batch of 50 images

http://www.tensorflow.org/get_started/mnist/pros

Results

• Training and evaluation took around 57 minutes on
my Macbook Pro laptop

• The accuracy on the test set was 99.22%

• Compare this to a linear Softmax classifier

• Training and evaluation now took around 2 seconds

and accuracy was 91.6%

• Using ConvNets on more complex image datasets
requires expensive server hardware

Keras

• Keras is a high-level API running on top of DNN libraries, for

example TensorFlow

– https://keras.io/

• Keras is especially useful since it contains pre-trained

ImageNet models, for example VGG16 and VGG19

• Training such models is extremely time consuming, so getting

access to a pre-trained model can be very useful

Keras

Google Vision API

https://cloud.google.com/vision/

Google Vision API

https://cloud.google.com/vision/

