
Lecture#7

Artificial Neural Networks



Linear Classifier

• We will begin by implementing a linear classifier

• It will have two major components:

• A score function that maps the data to categories

• A loss function that calculates the difference  

between predicted categories and actual categories  

in the dataset

• The loss function will be used for training the  
classifier



Score Function



Score Function

• We have a linear function:

• X is the input data, with one value xi for each  

attribute

• Each attribute is multiplied by a weight wi

• And finally a bias b is added

– So the linear function doesn’t have to cross the origin

• The linear function is used to separate categories:



Score Function

A

A
A

A
A

A

A

A

A
A

A

B B

B

B

B

B B

B

B

B

B

w1x1 + w2x2 + b = 0



Linear Separation

• As the name implies, the linear classificer can only  
separate linearly separable categories

• It will never be 100% accurate if we have a dataset  

that looks like this:



Linear Separation

A

A
A

A
A

A
A

A

A

A

B

B

B

B

B

B

B

B

B

B B

w1x1 + w2x2 + b = 0

B
B

B

B



Score Function

• If we calculate the score function:

• … for an instance we see the confidence that the  

example belongs to the category

– Higher values = more confidence

• This is our score function!

• What if we have more than one category?



Mutiple Categories

• If we have two or more categories, we need one  
linear function for each category:

• The most efficient way to calculate the score  
function is to use matrix/vector operations:



Score Function

• The weights can be seen as a matrix:

• … and the bias and example as column vectors:



Score Function

• Calculating the score function is then a matrix-vector  
multiplication plus addition:

• This produces a vector with one confidence value for  
each category

• The example is classified as the category with the  

highest confidence:



How it works

• Assume we have two categories and three inputs:

• … and with the bias vector:

• This is actually the dot-product of xi with each row in W

• Number of columns in W must be equal to the number of  

components in xi



How it works

• We don’t even need to split the input data X into columns

• When calculating a product between matrices W and X, we can  
see X as a bunch of lined up column vectors:

• This results in a new matrix:



How it works

• The bias vector b is then added to each column:

• Now we have a matrix where each column is a score  

vector for an example xi in X

• Taking argmax for each column produces a row  
vector with the predicted category for each example:



Simple example

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

56

231

24

2

1.1

3.2

-1.2

-96.8

437.9

60.75

W xi b scores

+ =

cat score  

dog score  

rabbit score

Image is converted to pixel  
vector (only 4 pixels used)

This is clearly a dog...

The weights need to be modified  
(learned) to produce correct output!



Simple example

0.8 0.5 0.1 2.0

0.2 -0.1 2.1 0.0

0 0.15 0.2 -0.3

56

231

24

2

1.1

3.2

-1.2

167.8

41.7

37.65

W xi b scores

+ =

cat score  

dog score  

rabbit score

Image is converted to pixel  
vector (only 4 pixels used)

Now we get correct output!

How can we automatically learn  
weights from training data?



Loss Function



Loss Function

• First, we need to define a loss function

– Sometimes called cost function or objective

• The loss function measures how happy we are with the result

• The first set of weights gave a poor prediction – we are not  

happy

• The second set of weights gave a good prediction – we are  

happy!

• The loss will be high for bad predictions, and low for good  

predictions

• There are many loss functions, but we will focus on Softmax



Softmax

• Softmax calculates the normalized probabilities for  
belonging to each category

• This is then combined to a single loss value: cross-

entropy loss



Softmax

• The loss Li is calculated as:

• We calculate the log probability for the correct category  

efyi and normalize by dividing with the sum of log  

probabilities for all categories

• Finally we calculate the negative natural logarithm of the  

normalized log probability for the correct class



Example

0.01 -0.05 0.1 0.05

0.7 0.2 0.05 0.16

0.0 -0.45 -0.2 0.03

-15

22

-44

56

0.0

0.2

-0.3

-2.85

0.86

0.28

W xi b scores

+ =

yi 2

0.058

2.36

1.32

efj normalize

loss = -log(0.353) = 1.04

0.016

0.632

0.353

Σ 1.0



Matrix Multiplication

0.01 -0.05 0.1 0.05

0.7 0.2 0.05 0.16

0.0 -0.45 -0.2 0.03

-15

22

-44

56

W xi

= dot-product of row 1 in W and column Xi

= dot-product of row 2 in W and column Xi

= dot-product of row 3 in W and column Xi

=



Matrix Multiplication

0.01 -0.05 0.1 0.05

0.7 0.2 0.05 0.16

0.0 -0.45 -0.2 0.03

-15

22

-44

56

W xi

= 0.01 * -15 - 0.05 * 22 + 0.1 * -44 + 0.05 * 56 = -2.85

= 0.7 * -15 + 0.2 * 22 + 0.05 * -44 + 0.16 * 56 = 0.66

= 0 * -15 - 0.45 * 22 - 0.2 * -44 + 0.03 * 56 = 0.58

=



Matrix Addition

0.01 -0.05 0.1 0.05

0.7 0.2 0.05 0.16

0.0 -0.45 -0.2 0.03

-15

22

-44

56

W xi

-2.85

0.66

0.58

=

0.0

0.2

-0.3

-2.85

0.86

0.28

b scores

+ =

Simply add each element of vector b



Numerical Stability

• If we have very high scores, calculating efj and then  
sum all the values can lead to numerical problems

• The sum can blowup, i.e. we get outside the range  

of double

• This can be solved by shifting all scores so that the  

highest score is 0:

– Find max(scores)

– Subtract max(scores) for each score



Regularization

• Suppose we have a perfect set of weights: loss = 0.0

• The problem is that this set might not be unique!

• There can be multiple sets of weights that give the same  

loss

• To distinct between two such sets, we extend the loss  

function with a regularization penalty:

data loss regularization loss



Regularization

• The most common one is the L2 norm, which penalizes large  

weights

– Large weights can lead to numerical overflow…

– Small weights improve generalization and reduces overflow

• The L2 norm is calculated as the squared sum of all weights:

• The lambda parameter is called the reqularization strength, and  

is typically set to a low value such as 0.01



Example

0.01 -0.05 0.1 0.05

0.7 0.2 0.05 0.16

0.0 -0.45 -0.2 0.03

W Squared W

L2 norm = sum of all squared W
= 0.8166

0.0001 0.0025 0.01 0.0025

0.49 0.04 0.0025 0.0256

0.0 0.2025 0.04 0.0009



Example

0.01 -0.05 0.1 0.05

0.7 0.2 0.05 0.16

0.0 -0.45 -0.2 0.03

-15

22

-44

56

0.0

0.2

-0.3

W xi b

+

yi 2

Loss = Data loss + regularization loss
= 1.04 + 0.01 * 0.8166 = 1.048



Example

1.00 2.00

2.00 -4.00

3.00 -1.00

W

0.00

0.50

-0.50

b

0.50 0.40

0.80 0.30

0.30 0.80

-0.40 0.30

-0.30 0.70

-0.70 0.20

0.70 -0.40

0.50 -0.60

-0.40 -0.50

X

0

0

0

1

1

1

2

2

2

1.30 -0.10 0.60

1.40 0.90 1.60

1.90 -2.10 -0.40

0.20 -1.50 -2.00

1.10 -2.90 -2.10

-0.30 -1.70 -2.80

-0.10 3.50 2.00

-0.70 3.90 1.60

-1.40 1.70 -1.20

y scores

0.56

1.04

0.11

1.96

4.06

1.68

1.72

2.40

3.00

L

1.84mean

1.0 4.0

4.0 16.0

9.0 1.0

Squared W

Data loss:  

Regularization loss:  

Total loss:

1.84

0.35

2.19

0.01

sum 35

λ



Optimization



Optimization

• The loss function quantifies the quality of a set of  
weights

• The goal of optimization, or learning, is to find a set  

of weights that minimizes the loss function

• This can of course be done with random search or  

hill climbing, but it will most likely take ages to find a  

good set of weights

• Instead we can compute the best direction using the 
gradient of the loss function!



Gradient

• The task is to computer the best direction in which we should  

change the weights

• This direction turns out to be related to the gradient of the loss  
function

• The gradient is a vector of slopes (derivatives) for each  

dimension in the input space

• Mathematically, the derivative of a 1-D function with respect to  

its (single) input is:



Gradient

• If we have a function that takes a vector of numbers  

instead of a single number, the derivatives are called  

partial derivatives

• The gradient is simply the vector of partial derivatives in  

each input dimension

• We can do this in two ways:

– Numerical gradient: slow and approximate

– Analytic gradient: fast and exact but error-prone

• Since speed is important, we will focus on the analytic  

gradient



Analytic Gradient

• To find the analytic gradient, we need to derive a  
formula for the gradient using our math skills

• Luckily, the loss functions we use are well known  

and we don’t have to find the formula on our own

• Depending on the loss function, the formula can be  

quite complex to implement

• How can we implement the gradients formula for  
Softmax?



Softmax Gradients

0.01 -0.05 0.1 0.05

0.7 0.2 0.05 0.16

0.0 -0.45 -0.2 0.03

-15

22

-44

56

0.0

0.2

-0.3

-2.85

0.86

0.28

W xi b scores

+ =

yi 2

0.058

2.36

1.32

efj

0.016

0.632

0.353

normalize

This is what we have already done  
when calculating loss



Softmax Gradients

0.01 -0.05 0.1 0.05

0.7 0.2 0.05 0.16

0.0 -0.45 -0.2 0.03

-15

22

-44

56

0.0

0.2

-0.3

-2.85

0.86

0.28

W xi b scores

+ =

yi 2

0.058

2.36

1.32

efj normalize

0.016

0.632

-0.647

0.016

0.632

0.353

dscores

Update the score for  

the correct category yi  

by -1



Softmax Gradients

-15 22 -44 56

xi
T

0.016

0.632

-0.647

dscores

Multiply dscores with  
the transpose of xi

=
-0.23 0.34 -0.68 0.87

-9.47 13.89 -27.77 35.35

9.70 -14.23 28.45 -36.21

dW



Multiply column and row vector

-15 22 -44 56

xi
T

0.016

0.632

-0.647

dscores

=

= 0.016 * -15
= -0.23

= 0.016 * 22
= 0.34

= 0.016 * -44
= -0.68

= 0.016 * 56
= 0.87

= 0.632 * -15
= -9.47

= 0.632 * 22
= 13.89

= 0.632 * -44
= -27.77

= 0.632 * 56
= 35.35

= -0.647 *
-15 = 9.70

= -0.647 * 22
= -14.23

= -0.647 *
-44 = 28.45

= -0.647 * 56
= -36.21

M0,0 = dscores0 * XT
i 0

M0,1 = dscores0 * XT
i 1

...



Softmax Gradients

0.016

0.632

-0.647

dscores

Sum the values of all rows
in dscores into a new vector

=

dB

0.016

0.632

-0.647

0.016

0.632

-0.647

=



Softmax Gradients

Now we have the gradients!

dB

0.016

0.632

-0.647

-0.23 0.34 -0.68 0.87

-9.47 13.89 -27.77 35.35

9.70 -14.23 28.45 -36.21

dW



What if we have multiple input examples?



0.01 -0.05 0.1 0.05

0.7 0.2 0.05 0.16

0.0 -0.45 -0.2 0.03

-15 8

22 -12

-44 14

56 -5

0.0

0.2

-0.3

-2.85 1.83

0.86 3.30

0.28 2.15

W xi b scores

+ =

yi 2 1

0.058 6.23

2.36 27.11

1.32 8.59

efj

0.016 0.149

0.632 0.647

0.353 0.205

normalize

Multiple training examples



yi 2 1

0.016 0.149

0.632 -0.353

-0.647 0.205

dscores

Multiple training examples

Update the score for  

the correct categories yi  

by -1



0.0078 0.074

0.316 -0.177

-0.323 0.102

dscores

Multiple training examples

Divide by number of training  
examples (2 in this case)



xi
Tdscores

Multiple training examples

Multiply dscores with  
the transpose of xi

-15 22 -44 56

8 -12 14 -5 =
0.479 -0.722 0.701 0.061

-6.147 9.063 -16.359 18.556

5.669 -8.341 15.659 -18.617

dW

0.0078 0.074

0.316 -0.177

-0.323 0.102



Softmax Gradients

dscores

Sum the values of all rows
in dscores into a new vector

=

dB

0.082

0.139

-0.221

0.0078+0.074

0.316-0.177

-0.323+0.102

=

0.0078 0.074

0.316 -0.177

-0.323 0.102



Regularization

• We also need to add a regularization factor to the  
weight gradients dW

• This is done by adding the weight matrix W scaled  

by lambda/2 to dW

• Let’s go back to our first example with a single  

training example:



Regularization Factor

dB is not changed

-0.23 0.34 -0.68 0.87

-9.47 13.89 -27.77 35.35

9.70 -14.23 28.45 -36.21

dW

0.01 -0.05 0.1 0.05

0.7 0.2 0.05 0.16

0.0 -0.45 -0.2 0.03

W

+

-0.2317 0.3396 -0.6793 0.8654

-9.4639 13.8866 -27.7709 35.3459

9.6992 -14.2277 28.4500 -36.2102

* λ * 0.5 =

dW + W * λ * 0.5

=



Weights Upgrades

• The weights are upgraded by subtracting dW
multiplied by a learning rate

• The learning rate is typically set to a low value such  

as 0.1 or 0.05

• The best learning rate for each dataset has to be  

discovered by trial and error…



Weights Upgrades

0.01 -0.05 0.1 0.05

0.7 0.2 0.05 0.16

0.0 -0.45 -0.2 0.03

W

-

-0.2317 0.3396 -0.6793 0.8654

-9.4639 13.8866 -27.7709 35.3459

9.6992 -14.2277 28.4500 -36.2102

dW

* 0.1 =

0.033 -0.084 0.168 -0.037

1.646 -1.189 2.827 -3.375

-0.970 0.973 -3.045 3.651

newW

=



Bias Upgrades

b

-

dB

* 0.1 =

newB

0.0

0.2

-0.3

0.082

0.139

-0.221

-0.002

0.137

-0.235

If we calculate the loss, it has decreased  
from 1.04 to 0.48



Back to our previous example

1.00 2.00

2.00 -4.00

3.00 -1.00

W

0.00

0.50

-0.50

b

0.50 0.40

0.80 0.30

0.30 0.80

-0.40 0.30

-0.30 0.70

-0.70 0.20

0.70 -0.40

0.50 -0.60

-0.40 -0.50

0

0

0

1

1

1

2

2

2

1.30 -0.10 0.60

1.40 0.90 1.60

1.90 -2.10 -0.40

0.20 -1.50 -2.00

1.10 -2.90 -2.10

-0.30 -1.70 -2.80

-0.10 3.50 2.00

-0.70 3.90 1.60

-1.40 1.70 -1.20

X y scores

0.56

1.04

0.11

1.96

4.06

1.68

1.72

2.40

3.00

L

1.84meanData loss:  

Regularization loss:  

Total loss:

1.84

0.35

2.19

Let’s calculate the  
gradients!



Example - iteration 0

1.00 2.00

-0.20 0.07

2.00 -4.00

0.24 -0.27

3.00 -1.00

-0.01 0.19

W

0.00
0.15

0.50
0.04

-0.50
-0.19

b

0.50 0.40

0.80 0.30

0.30 0.80

-0.40 0.30

-0.30 0.70

-0.70 0.20

0.70 -0.40

0.50 -0.60

-0.40 -0.50

0

0

0

1

1

1

2

2

2

1.30 -0.10 0.60

1.40 0.90 1.60

1.90 -2.10 -0.40

0.20 -1.50 -2.00

1.10 -2.90 -2.10

-0.30 -1.70 -2.80

-0.10 3.50 2.00

-0.70 3.90 1.60

-1.40 1.70 -1.20

X y scores

0.56

1.04

0.11

1.96

4.06

1.68

1.72

2.40

3.00

L

1.84meanData loss: 1.84

Regularization loss: 0.35

Total loss: 2.19



Example - iteration 1

1.02 1.99

-0.20 0.07

1.98 -3.97

0.24 -0.27

3.00 -1.02

-0.01 0.19

W

-0.02
0.15

0.50
0.04

-0.48
-0.18

b

0.50 0.40

0.80 0.30

0.30 0.80

-0.40 0.30

-0.30 0.70

-0.70 0.20

0.70 -0.40

0.50 -0.60

-0.40 -0.50

0

0

0

1

1

1

2

2

2

1.29 -0.10 0.61

1.40 0.89 1.61

1.89 -2.09 -0.40

0.17 -1.49 -1.99

1.07 -2.88 -2.09

-0.33 -1.68 -2.79

-0.10 3.47 2.03

-0.70 3.87 1.63

-1.42 1.69 -1.17

X y scores

0.56

1.04

0.11

1.93

4.01

1.65

1.68

2.35

1.96

L

1.81meanData loss: 1.81

Regularization loss: 0.35

Total loss: 2.16



Gradient Descent

• The procedure of repeatedly evaluating the gradients and  

perform weights updates is call Gradient Descent

• It is the most common way of optimizing/training linear  

classifiers, and also Neural Networks which we will look into  

shortly

• We can also train on batches of the training examples instead  

of all examples

– Mini-batch Gradient Descent

• Or we can train on one example at a time

– Stochastic Gradient Descent



Overview of information flow



Linear Softmax classifier

• Now we have a complete linear Softmax classifier

• Let’s see how well it works
on the example data:

0.50 0.40

0.80 0.30

0.30 0.80

-0.40 0.30

-0.30 0.70

-0.70 0.20

0.70 -0.40

0.50 -0.60

-0.40 -0.50

0

0

0

1

1

1

2

2

2

X y



Linear Softmax classifier
Iteration Loss Accuracy

0 2.19 2/9 22.2%

1 1.91 2/9 22.2%

2 1.67 2/9 22.2%

3 1.49 3/9 33.3%

4 1.34 4/9 44.4%

5 1.22 5/9 55.6%

6 1.11 6/9 66.7%

7 1.03 6/9 66.7%

8 0.96 7/9 77.8%

9 0.90 7/9 77.8%

10 0.85 7/9 77.8%

11 0.81 7/9 77.8%

12 0.77 7/9 77.8%

13 0.74 7/9 77.8%

14 0.71 7/9 77.8%

15 0.69 7/9 77.8%

16 0.67 7/9 77.8%

17 0.66 8/9 88.9%

18 0.64 8/9 88.9%

19 0.63 9/9 100%

λ: 0.01

Lrate: 1.0



Iris dataset

Iteration Loss

0 1.0711

40 0.6935

80 0.5791

120 0.4842

160 0.4052

200 0.3655

240 0.3603

280 0.3591

300 0.3592

Final Result

Loss: 0.3591

Accuracy 147/150 98%

λ: 0.01

Lrate: 0.1

Iterations: 300



How can we expand this into a  
Neural Network?



Current network layout

X0

X1

Inputs Softmax output  
layer

We have a single layer,  
the output layer



Current network layout

X0

X1

Inputs Softmax output  
layer

Each node in the

network is called

a Unit



Current network layout

X0

X1

Inputs Softmax output  
layer

We have a network with

two input units and three

output units



Limitations

X0

X1

Even if this is a quite powerful classifier, it can  
only handle categories that are linearly separable!



Limitations



Layered network

X0

X1

Inputs Softmax output  
layer

Expand with a layer  
of hidden nodes



Layered network

X0

X1

The layered (neural) network can learn  
categories that are not linearly separable!



Unit

x0

x1

w0

w1

b

score

Each unit has its own set of inputs, a weight  
for each input and a bias.

The output (score) can act as input to units  

in another layer.



Score Function

X0

X1

The input data x is the input to the hidden layer

The scores of the hidden layer is input to the output layer



Hidden Layer Units

• In the output layer we used the Softmax function

• In the hidden layer we need a slightly different type  

of activation function

• There is a wide range we can choose from:

– Sigmoid

– Tanh

– ReLU

– …

• Here, we will use the ReLU function



ReLU

• The ReLU (Rectified Linear Unit) calculates the  
function:

• First, the weighted sum of the inputs plus the bias is  

calculated (as we’ve done before)

• Then, the activation function is applied on the result



Score Function

0.01 -0.05 0.1 0.05

0.7 0.2 0.05 0.16

0.0 -0.45 -0.2 0.03

-15

22

-44

56

0.0

0.2

-0.3

-2.85

0.86

0.28

Wh
xi bh scoresh

+ =

yi 2

0.02 0.03 -0.1

0.3 0.5 -0.05

0.1 0.0 -0.3

1.2

-0.1

0.5

1.19

0.31

0.416

Wo bo scoreso

+ =

Hidden  
Layer

Output  
Layer

0

0.86

0.28

ReLU



Loss Function

• The loss function/gradients are slightly more  
complex

• We need to calculate the loss and gradients for the  

output layer first (in the same way as we did before)

• The gradients are then backpropagated into the  

hidden layer

• The loss for both layers are summed



Loss Function

0.02 0.03 -0.1

0.3 0.5 -0.05

0.1 0.0 -0.3

1.2

-0.1

0.5

1.19

0.31

0.416

Wo bo scoreso

+ =Output  
Layer

3.313

1.372

1.516

efj normalize

loss = -log(0.244) = 1.41

0.534

0.221

0.244

Σ 1.0



Gradients

0.534

0.221

-0.756

dscores

Update the score for  

the correct category yi  

by -1

0.02 0.03 -0.1

0.3 0.5 -0.05

0.1 0.0 -0.3

1.2

-0.1

0.5

1.19

0.31

0.416

Wo bo scoreso

+ =Output  
Layer

3.313

1.372

1.516

efj normalize

Σ 1.0

0.534

0.221

0.244



Gradients

dscores

0.02 0.03 -0.1

0.3 0.5 -0.05

0.1 0.0 -0.3

1.2

-0.1

0.5

Wo bo scoreso

+ =Output  
Layer

efj normalize

Σ 1.0

0 0.86 0.28

xi
T

=
0.0 0.459 0.150

0.0 0.190 0.062

0.0 -0.650 -0,212

dWo

1.19

0.31

0.416

3.313

1.372

1.516

0.534

0.221

0.244

0.534

0.221

-0.756



Gradients

dscores

0.02 0.03 -0.1

0.3 0.5 -0.05

0.1 0.0 -0.3

1.2

-0.1

0.5

Wo bo scoreso

+ =Output  
Layer

efj normalize

Σ 1.0

= sum(rows)
0.534

0.221

-0.756

dBo

1.19

0.31

0.416

3.313

1.372

1.516

0.534

0.221

0.244

0.534

0.221

-0.756



Loss Function

Hidden  
Layer

Wh

loss = λ * 0.817 * 0.5 = 0.00408

0.01 -0.05 0.1 0.05

0.7 0.2 0.05 0.16

0.0 -0.45 -0.2 0.03

Loss is the L2 regularization =  
sum of all squared Wij



Gradients

0.534

0.221

-0.756

dscores

Hidden  
Layer

0.02 0.3 0.1

0.03 0.5 0.0

-0.1 -0.05 -0.3

Wo
T dhidden

0.0014

0.127

0.162

ReLU

0.0

0.127

0.162

score function is 0
dhidden

= ,

0

0.86

0.28

Set dhidden to 0 if



Gradients

0.534

0.221

-0.756

dscores

Hidden  
Layer

0.02 0.3 0.1

0.03 0.5 0.0

-0.1 -0.05 -0.3

Wo
T dhidden

=

0.0014

0.127

0.162

0

0.86

0.28

ReLU

dhidden

0.0

0.127

0.162

,

-15 22 -44 56

xi
T

=

0.0 0.0 0.0 0.0

-1.90 2.79 -5.59 7.11

-2.43 3.56 7.13 9.07

dWh



Gradients

0.534

0.221

-0.756

dscores

Hidden  
Layer

0.02 0.3 0.1

0.03 0.5 0.0

-0.1 -0.05 -0.3

Wo
T dhidden

=

0.0014

0.127

0.162

0

0.86

0.28

ReLU

dhidden

0.0

0.127

0.162

,

= sum(rows)
0.0

0.127

0.162

dBh



Regularization

• Regularization is added to loss and gradients in the  
output and hidden layer as before

• The total loss is the loss for the output plus the loss  

for the hidden layer



Weights Upgrades

- * 0.1 =

0.01 -0.05 0.10 0.05

0.89 -0.08 0.61 -0.55

0.24 -0.81 0.51 -0.88

newWh

=

0.01 -0.05 0.1 0.05

0.7 0.2 0.05 0.16

0.0 -0.45 -0.2 0.03

Wh

0.0 0.0 0.0 0.0

-1.90 2.79 -5.59 7.11

-2.43 3.56 7.13 9.07

dWh



Bias Upgrades

- * 0.1 =

0.0

0.19

-0.32

newBh

=

0.0

0.127

0.162

dBh

0.0

0.2

-0.3

bh



Summary

• The linear classifier has now been extended to  
contain a hidden layer with ReLU nodes

• The hidden layer enables the classifier to learn  

categories that are not linearly separable



Non-linearly separable categories


