Lecture\#7

Artificial Neural Networks

Linear Classifier

- We will begin by implementing a linear classifier
- It will have two major components:
- A score function that maps the data to categories
- A loss function that calculates the difference between predicted categories and actual categories in the dataset
- The loss function will be used for training the classifier

Score Function

Score Function

- We have a linear function:

$$
w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{n} x_{n}+b=0
$$

- X is the input data, with one value x_{i} for each attribute
- Each attribute is multiplied by a weight w_{i}
- And finally a bias b is added
- So the linear function doesn't have to cross the origin
- The linear function is used to separate categories:

Score Function

Linear Separation

- As the name implies, the linear classificer can only separate linearly separable categories
- It will never be 100% accurate if we have a dataset that looks like this:

Linear Separation

Score Function

- If we calculate the score function:

$$
w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{n} x_{n}+b=0
$$

- ... for an instance we see the confidence that the example belongs to the category
- Higher values = more confidence
- This is our score function!
- What if we have more than one category?

Mutiple Categories

- If we have two or more categories, we need one linear function for each category:

$$
\begin{aligned}
& w_{11} x_{11}+w_{12} x_{12}+\ldots+w_{1 n} x_{1 n}+b_{1}=0 \\
& w_{21} x_{21}+w_{22} x_{22}+\ldots+w_{2 n} x_{2 n}+b_{2}=0 \\
& \ldots \\
& w_{k 1} x_{k 1}+w_{k 2} x_{k 2}+\ldots+w_{k n} x_{k n}+b_{k}=0
\end{aligned}
$$

- The most efficient way to calculate the score function is to use matrix/vector operations:

Score Function

- The weights can be seen as a matrix:

$$
\boldsymbol{W}=\left[\begin{array}{ccccc}
w_{11} & w_{12} & w_{13} & \ldots & w_{1 n} \\
w_{21} & w_{22} & w_{23} & \ldots & w_{2 n} \\
\ldots & & & & \\
w_{k 1} & w_{k 2} & w_{k 3} & \ldots & w_{k n}
\end{array}\right]
$$

- ... and the bias and example as column vectors:

$$
\boldsymbol{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\cdots \\
\hdashline b_{k}
\end{array}\right] \quad \boldsymbol{x}_{i}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right]
$$

Score Function

- Calculating the score function is then a matrix-vector multiplication plus addition:

$$
f\left(\boldsymbol{x}_{i}, \boldsymbol{W}, \boldsymbol{b}\right)=\boldsymbol{W} \boldsymbol{x}_{i}+\boldsymbol{b}
$$

- This produces a vector with one confidence value for each category
- The example is classified as the category with the highest confidence:

$$
y_{\text {pred }}=\operatorname{argmax}(\text { scores })
$$

How it works

- Assume we have two categories and three inputs:

$$
\boldsymbol{W} \boldsymbol{x}_{\boldsymbol{i}}=\left[\begin{array}{lll}
w_{11} & w_{12} & w_{13} \\
w_{21} & w_{22} & w_{23}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
w_{11} x_{1}+w_{12} x_{2}+w_{13} x_{3} \\
w_{21} x_{1}+w_{22} x_{2}+w_{23} x_{3}
\end{array}\right]
$$

- ... and with the bias vector:

$$
\boldsymbol{W} \boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{b}=\left[\begin{array}{l}
w_{11} x_{1}+w_{12} x_{2}+w_{13} x_{3} \\
w_{21} x_{1}+w_{22} x_{2}+w_{23} x_{3}
\end{array}\right]+\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{l}
w_{11} x_{1}+w_{12} x_{2}+w_{13} x_{3}+b_{1} \\
w_{21} x_{1}+w_{22} x_{2}+w_{23} x_{3}+b_{2}
\end{array}\right]
$$

- This is actually the dot-product of $\mathbf{x}_{\mathbf{i}}$ with each row in W
- Number of columns in W must be equal to the number of components in $\mathbf{x}_{\mathbf{i}}$

How it works

- We don't even need to split the input data \mathbf{X} into columns
- When calculating a product between matrices \mathbf{W} and \mathbf{X}, we can see \mathbf{X} as a bunch of lined up column vectors:

$$
\boldsymbol{W} \boldsymbol{X}=\left[\begin{array}{lll}
w_{11} & w_{12} & w_{13} \\
w_{21} & w_{22} & w_{23}
\end{array}\right]\left[\begin{array}{l}
x_{11} \\
x_{12} \\
x_{13}
\end{array}\right]\left[\begin{array}{l}
x_{21} \\
x_{22} \\
x_{23}
\end{array}\right]
$$

- This results in a new matrix:

$$
\boldsymbol{W} \boldsymbol{X}=\left[\begin{array}{ll}
w_{11} x_{11}+w_{12} x_{12}+w_{13} x_{13} & w_{11} x_{21}+w_{12} x_{22}+w_{13} x_{23} \\
w_{21} x_{11}+w_{22} x_{12}+w_{23} x_{13} & w_{21} x_{21}+w_{22} x_{22}+w_{23} x_{23}
\end{array}\right]
$$

How it works

- The bias vector \mathbf{b} is then added to each column:

$$
\boldsymbol{W} \boldsymbol{X}+\boldsymbol{b}=\left[\begin{array}{ll}
w_{11} x_{11}+w_{12} x_{12}+w_{13} x_{13}+b_{1} & w_{11} x_{21}+w_{12} x_{22}+w_{13} x_{23}+b_{1} \\
w_{21} x_{11}+w_{22} x_{12}+w_{23} x_{13}+b_{2} & w_{21} x_{21}+w_{22} x_{22}+w_{23} x_{23}+b_{2}
\end{array}\right]
$$

- Now we have a matrix where each column is a score vector for an example $\mathbf{x}_{\mathbf{i}}$ in \mathbf{X}
- Taking argmax for each column produces a row vector with the predicted category for each example:

$$
\boldsymbol{Y}_{\text {pred }}=\left[\operatorname{argmax}\left(\text { scores }_{\mathbf{1}}\right) \quad \operatorname{argmax}\left(\text { scores }_{\mathbf{2}}\right)\right]
$$

Simple example

Image is converted to pixel vector (only 4 pixels used)

This is clearly a dog...
The weights need to be modified (learned) to produce correct output!

Simple example

Image is converted to pixel vector (only 4 pixels used)

Now we get correct output!
How can we automatically learn weights from training data?

Loss Function

- First, we need to define a loss function
- Sometimes called cost function or objective
- The loss function measures how happy we are with the result
- The first set of weights gave a poor prediction - we are not happy
- The second set of weights gave a good prediction - we are happy!
- The loss will be high for bad predictions, and low for good predictions
- There are many loss functions, but we will focus on Softmax

Softmax

- Softmax calculates the normalized probabilities for belonging to each category
- This is then combined to a single loss value: crossentropy loss

Softmax

- The loss L_{i} is calculated as:

$$
L_{i}=-\log \left(\frac{e^{f_{y i}}}{\sum_{j} e^{f_{j}}}\right)
$$

- We calculate the log probability for the correct category efyi and normalize by dividing with the sum of log probabilities for all categories
- Finally we calculate the negative natural logarithm of the normalized log probability for the correct class

Example

Matrix Multiplication

\mathbf{W}			$\mathbf{x}_{\mathbf{i}}$		
0.01	-0.05	0.1	0.05		
0.7	0.2	0.05	0.16		
0.0	-0.45	-0.2	0.03		-15
:---:					
22					
-44					
56					

$=$| $=$ dot-product of row 1 in W and column X_{i} |
| :--- |
| $=$ dot-product of row 2 in W and column X_{i} |
| |
| $=$ dot-product of row 3 in W and column X_{i} |

Matrix Multiplication

\mathbf{W}			
\begin{tabular}{\|c	c	c	}
\hline			
\end{tabular} $\mathbf{\mathbf { x } _ { \mathbf { i } }}$			
0.01	-0.05	0.1	0.05
0.7	0.2	0.05	0.16
0.0	-0.45	-0.2	0.03
:---:			
22			
-44			
56			

$=$| $=0.01^{*}-15-0.05 * 22+0.1^{*}-44+0.05 * 56=-2.85$ |
| :---: |
| $=0.7^{*}-15+0.2^{*} 22+0.05^{*}-44+0.16 * 56=0.66$ |
| $=0^{*}-15-0.45 * 22-0.2^{*}-44+0.03 * 56=0.58$ |

Matrix Addition

W			$\mathbf{x}_{\mathbf{i}}$		
0.01	-0.05	0.1	0.05		
0.7	0.2	0.05	0.16		
0.0	-0.45	-0.2	0.03		
-15					
22					
-44					
56				$=$	-2.85
:---:					
0.66					
0.58	$+$	0.0			
:---:					
0.2					
-0.3	$=$	-2.85			
:---:					
0.86					
0.28					

Simply add each element of vector \mathbf{b}

Numerical Stability

- If we have very high scores, calculating efj and then sum all the values can lead to numerical problems
- The sum can blowup, i.e. we get outside the range of double
- This can be solved by shifting all scores so that the highest score is 0 :
- Find max(scores)
- Subtract max(scores) for each score

Regularization

- Suppose we have a perfect set of weights: loss $=0.0$
- The problem is that this set might not be unique!
- There can be multiple sets of weights that give the same loss
- To distinct between two such sets, we extend the loss function with a regularization penalty:

$$
L=\underbrace{\frac{1}{N} \sum_{i} L_{i}}_{\text {data loss }}+\underbrace{\lambda R(W)}_{\text {regularization loss }}
$$

Regularization

- The most common one is the L2 norm, which penalizes large weights
- Large weights can lead to numerical overflow...
- Small weights improve generalization and reduces overflow
- The L2 norm is calculated as the squared sum of all weights:

$$
R(W)=\sum_{k} \sum_{l} w_{k, l}^{2}
$$

- The lambda parameter is called the reqularization strength, and is typically set to a low value such as 0.01

Example

Example

Loss = Data loss + regularization loss
$=1.04+0.01^{*} 0.8166=1.048$

Example

W		b	X		y	scores			$\frac{L}{0.56}$
1.00	2.00	0.00	0.50	0.40	0	1.30	-0.10	0.60	
2.00	-4.00	0.50	0.80	0.30	0	1.40	0.90	1.60	1.04
3.00	-1.00	-0.50	0.30	0.80	0	1.90	-2.10	-0.40	0.11
Squared W			-0.40	0.30	1	0.20	-1.50	-2.00	1.96
			-0.30	0.70	1	1.10	-2.90	-2.10	4.06
1.0	4.0		-0.70	0.20	1	-0.30	-1.70	-2.80	1.68
4.0	16.0		0.70	-0.40	2	-0.10	3.50	2.00	1.72
9.0	1.0		0.50	-0.60	2	-0.70	3.90	1.60	2.40
			-0.40	-0.50	2	-1.40	1.70	-1.20	3.00
sum	35								
λ	0.01		Data loss:			1.84		mean	1.84
			Regularization loss:			0.35			
			Total loss:			2.19			

Optimization

Optimization

- The loss function quantifies the quality of a set of weights
- The goal of optimization, or learning, is to find a set of weights that minimizes the loss function
- This can of course be done with random search or hill climbing, but it will most likely take ages to find a good set of weights
- Instead we can compute the best direction using the gradient of the loss function!

Gradient

- The task is to computer the best direction in which we should change the weights
- This direction turns out to be related to the gradient of the loss function
- The gradient is a vector of slopes (derivatives) for each dimension in the input space
- Mathematically, the derivative of a 1-D function with respect to its (single) input is:

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Gradient

- If we have a function that takes a vector of numbers instead of a single number, the derivatives are called partial derivatives
- The gradient is simply the vector of partial derivatives in each input dimension
- We can do this in two ways:
- Numerical gradient: slow and approximate
- Analytic gradient: fast and exact but error-prone
- Since speed is important, we will focus on the analytic gradient

Analytic Gradient

- To find the analytic gradient, we need to derive a formula for the gradient using our math skills
- Luckily, the loss functions we use are well known and we don't have to find the formula on our own
- Depending on the loss function, the formula can be quite complex to implement
- How can we implement the gradients formula for Softmax?

Softmax Gradients

W				$\mathrm{X}_{\mathbf{i}}$	b	scores		$e^{f j}$		normalize	
0.01	-0.05	0.1	0.05	-15	0.0		-2.85		0.058		0.016
0.7	0.2	0.05	0.16	22	0.2	$=$	0.86	\rightarrow	2.36	\rightarrow	0.632
0.0	-0.45	-0.2	0.03	-44	-0.3		0.28		1.32		0.353

This is what we have already done when calculating loss

Softmax Gradients

Softmax Gradients

dscores
$\mathbf{X}_{\mathbf{i}}^{\mathbf{T}}$
0.016 0.632 -0.647 -15 22 -44 56

Multiply dscores with the transpose of $\mathbf{x}_{\mathbf{i}}$

Multiply column and row vector

dscores	$\mathbf{X i}^{\mathbf{T}}$				$=$	$=0.016$ *-15	$=0.016$ * 22	$=0.016$ *-44	$=0.016$ * 56
0.016	-15	22	-44	56		$=-0.23$	= 0.34	$=-0.68$	$=0.87$
0.632						$\begin{gathered} =0.632 *-15 \\ =-9.47 \end{gathered}$	$\begin{gathered} =0.632 * 22 \\ =13.89 \end{gathered}$	$\begin{aligned} = & 0.632 *-44 \\ = & -27.77 \end{aligned}$	$\begin{gathered} =0.632 * 56 \\ =35.35 \end{gathered}$
-0.647						$\begin{aligned} & =-0.647^{*} \\ & -15=9.70 \end{aligned}$	$\begin{aligned} = & -0.647 * 22 \\ & =-14.23 \end{aligned}$	$\begin{gathered} =-0.647^{*} \\ -44=28.45 \end{gathered}$	$\begin{aligned} = & -0.647 * 56 \\ & =-36.21 \end{aligned}$

$$
\begin{aligned}
& \mathrm{M}_{0,0}=\text { dscores }_{0}{ }^{*} \mathrm{Xdi}_{0}^{\top}{ }_{0}^{\top} \\
& \mathrm{M}_{0,1}=\text { dscores }_{0}{ }^{*} \mathrm{X}_{i}^{\top}
\end{aligned}
$$

Softmax Gradients

dscores

0.016
0.632
-0.647
:---:
0.632
-0.647
:---:
0.632
-0.647

Sum the values of all rows in dscores into a new vector

Softmax Gradients

dW

-0.23	0.34	-0.68	0.87		
-9.47	13.89	-27.77	35.35		
9.70	-14.23	28.45	-36.21	\quad	0.016
:---:					
0.632					
-0.647					

Now we have the gradients!

What if we have multiple input examples?

Multiple training examples

Multiple training examples

dscores

0.016	0.149
0.632	-0.353
-0.647	0.205

Update the score for the correct categories y_{i} by -1

Multiple training examples

dscores

0.0078	0.074
0.316	-0.177
-0.323	0.102

Divide by number of training examples (2 in this case)

Multiple training examples

dscores			
$\mathbf{X}_{\mathbf{i}}^{\mathbf{\top}}$			$\mathbf{d W}$
0.0078 0.074 0.316 -0.177 -0.323 0.102 -15 22 -44 56 8 -12 14 -5$\quad=$0.479 -0.722 0.701 0.061 -6.147 9.063 -16.359 18.556 5.669 -8.341 15.659 -18.617			

Multiply dscores with the transpose of $\mathbf{x}_{\mathbf{i}}$

Softmax Gradients

dscores

0.0078	0.074		
0.316	-0.177		
-0.323	0.102	$=$	$0.0078+0.074$
:---:	:---:	:---:	
$0.316-0.177$			
$-0.323+0.102$	$=$	0.082	
:---:			
0.139			
-0.221			

Sum the values of all rows in dscores into a new vector

Regularization

- We also need to add a regularization factor to the weight gradients dW
- This is done by adding the weight matrix \mathbf{W} scaled by lambda/2 to dW
- Let's go back to our first example with a single training example:

Regularization Factor

dW

-0.23	0.34	-0.68	0.87					
-9.47	13.89	-27.77	35.35					
9.70	-14.23	28.45	-36.21	$+$	0.01	-0.05	0.1	0.05
:---:	:---:	:---:	:---:					
0.7	0.2	0.05	0.16					
0.0	-0.45	-0.2	0.03					
$\boldsymbol{\lambda} * \boldsymbol{0} .5$								

$$
d W+W * \lambda * 0.5
$$

$=$| -0.2317 | 0.3396 | -0.6793 | 0.8654 |
| :---: | :---: | :---: | :---: |
| -9.4639 | 13.8866 | -27.7709 | 35.3459 |
| 9.6992 | -14.2277 | 28.4500 | -36.2102 |

dB is not changed

Weights Upgrades

- The weights are upgraded by subtracting dW multiplied by a learning rate
- The learning rate is typically set to a low value such as 0.1 or 0.05
- The best learning rate for each dataset has to be discovered by trial and error...

Weights Upgrades

W			
0.01	-0.05	0.1	0.05
0.7	0.2	0.05	0.16
0.0	-0.45	-0.2	0.03

dW

0.01	-0.05	0.1	0.05					
0.7	0.2	0.05	0.16					
0.0	-0.45	-0.2	0.03	$-\quad$	-0.2317	0.3396	-0.6793	0.8654
:---:	:---:	:---:	:---:					
-9.4639	13.8866	-27.7709	35.3459					
9.6992	-14.2277	28.4500	-36.2102	$\quad * \mathbf{0 . 1} \quad=$				

newW

$=$| 0.033 | -0.084 | 0.168 | -0.037 |
| :---: | :---: | :---: | :---: |
| 1.646 | -1.189 | 2.827 | -3.375 |
| -0.970 | 0.973 | -3.045 | 3.651 |

Bias Upgrades

\mathbf{b}	$\mathbf{d B}$		
0.0			
0.0			
0.2			
-0.3		\quad	0.082
:---:	:---:		
0.139			
-0.221			

If we calculate the loss, it has decreased from 1.04 to 0.48

Back to our previous example

W		b
1.00	2.00	0.00
2.00	-4.00	0.50
3.00	-1.00	-0.50

X		y
0.50	0.40	0
0.80	0.30	0
0.30	0.80	0
-0.40	0.30	1
-0.30	0.70	1
-0.70	0.20	1
0.70	-0.40	2
0.50	-0.60	2
-0.40	-0.50	2

scores

1.30	-0.10	0.60		
1.40	0.90	1.60		
1.90	-2.10	-0.40		
0.20	-1.50	-2.00		
1.10	-2.90	-2.10		
-0.30	-1.70	-2.80		
-0.10	3.50	2.00		
-0.70	3.90	1.60		
-1.40	1.70	-1.20	\quad	0.56
:---:	:---:			
1.04				
0.11				
1.96				
4.06				
1.68				
1.72				
2.40				
3.00				

Let's calculate the gradients!

Data loss:
1.84
mean
1.84

Regularization loss: 0.35
Total loss: $\quad 2.19$

Example - iteration 0

W		b	X		y	scores			$\frac{L}{0.56}$
1.00	2.00	0.00	0.50	0.40	0	1.30	-0.10	0.60	
-0.20	0.07	0.15	0.80	0.30	0	1.40	0.90	1.60	1.04
2.00	-4.00	0.50	0.30	0.80	0	1.90	-2.10	-0.40	0.11
0.24	-0.27	0.04	-0.40	0.30	1	0.20	-1.50	-2.00	1.96
3.00	-1.00	-0.50	-0.30	0.70	1	1.10	-2.90	-2.10	4.06
-0.01	0.19	-0.19	-0.70	0.20	1	-0.30	-1.70	-2.80	1.68
			0.70	-0.40	2	-0.10	3.50	2.00	1.72
			0.50	-0.60	2	-0.70	3.90	1.60	2.40
			-0.40	-0.50	2	-1.40	1.70	-1.20	3.00
				Data		1.84		mean	1.84
				Regul	ion loss:	0.35			
				Total lo		2.19			

Example - iteration 1

W		$\frac{\mathbf{b}}{\frac{-0.02}{0.15}}$	X		y	scores			$\frac{\mathbf{L}}{0.56}$
$\begin{array}{r} 1.02 \\ -0.20 \end{array}$	$\begin{aligned} & 1.99 \\ & 0.07 \end{aligned}$	$\begin{gathered} -0.02 \\ 0.15 \end{gathered}$	0.50	0.40	0	1.29	-0.10	0.61	
			0.80	0.30	0	1.40	0.89	1.61	1.04
$\begin{aligned} & 1.98 \\ & 0.24 \end{aligned}$	$\begin{aligned} & -3.97 \\ & -0.27 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.50 \\ 0.04 \end{array}$	0.30	0.80	0	1.89	-2.09	-0.40	0.11
			-0.40	0.30	1	0.17	-1.49	-1.99	1.93
$\begin{gathered} 3.00 \\ -0.01 \end{gathered}$	$\begin{gathered} -1.02 \\ 0.19 \end{gathered}$	$\begin{aligned} & -0.48 \\ & -0.18 \end{aligned}$	-0.30	0.70	1	1.07	-2.88	-2.09	4.01
			-0.70	0.20	1	-0.33	-1.68	-2.79	1.65
			0.70	-0.40	2	-0.10	3.47	2.03	1.68
		0.50	-0.60	2	-0.70	3.87	1.63	2.35	
		-0.40	-0.50	2	-1.42	1.69	-1.17	1.96	
			Data loss:			1.81		mean	1.81
		Regularization loss:	0.35						
		Total loss:	2.16						

Gradient Descent

- The procedure of repeatedly evaluating the gradients and perform weights updates is call Gradient Descent
- It is the most common way of optimizing/training linear classifiers, and also Neural Networks which we will look into shortly
- We can also train on batches of the training examples instead of all examples
- Mini-batch Gradient Descent
- Or we can train on one example at a time
- Stochastic Gradient Descent

Overview of information flow

Linear Softmax classifier

- Now we have a complete linear Softmax classifier
- Let's see how well it works on the example data:

X		y
0.50	0.40	0
0.80	0.30	0
0.30	0.80	0
-0.40	0.30	1
-0.30	0.70	1
-0.70	0.20	1
0.70	-0.40	2
0.50	-0.60	2
-0.40	-0.50	2

Linear Softmax classifier

$\lambda: 0.01$ Lrate: 1.0	Iteration	Loss	Acc	
		2.19	2/9	22.2\%
	1	1.91	2/9	22.2\%
	2	1.67	2/9	22.2\%
	3	1.49	3/9	33.3\%
	4	1.34	4/9	44.4\%
	5	1.22	5/9	55.6\%
	6	1.11	6/9	66.7\%
	7	1.03	6/9	66.7\%
	8	0.96	7/9	77.8\%
	9	0.90	7/9	77.8\%
	10	0.85	7/9	77.8\%
	11	0.81	7/9	77.8\%
	12	0.77	7/9	77.8\%
	13	0.74	7/9	77.8\%
	14	0.71	7/9	77.8\%
	15	0.69	7/9	77.8\%
	16	0.67	7/9	77.8\%
	17	0.66	8/9	88.9\%
	18	0.64	8/9	88.9\%
	19	0.63	9/9	100\%

Iris dataset

Iteration	Loss
0	1.0711
40	0.6935
80	0.5791
120	0.4842
160	0.4052
200	0.3655
240	0.3603
280	0.3591
300	0.3592

$\lambda: 0.01$
Lrate: 0.1
Iterations: 300

Final Result		
Loss:	0.3591	
Accuracy	$147 / 150$	98%

How can we expand this into a Neural Network?

Current network layout

We have a single layer, the output layer

Inputs
Softmax output layer

Current network layout

Inputs
Softmax output layer

Current network layout

We have a network with two input units and three output units

Softmax output layer

Limitations

Even if this is a quite powerful classifier, it can only handle categories that are linearly separable!

Limitations

Layered network

Inputs
Expand with a layer of hidden nodes

Softmax output layer

Layered network

The layered (neural) network can learn categories that are not linearly separable!

Unit

Each unit has its own set of inputs, a weight for each input and a bias.

The output (score) can act as input to units in another layer.

Score Function

The input data x is the input to the hidden layer
The scores of the hidden layer is input to the output layer

Hidden Layer Units

- In the output layer we used the Softmax function
- In the hidden layer we need a slightly different type of activation function
- There is a wide range we can choose from:
- Sigmoid
- Tanh
- ReLU
- Here, we will use the ReLU function

ReLU

- The ReLU (Rectified Linear Unit) calculates the function:

$$
f(x)=\max (0, x)
$$

- First, the weighted sum of the inputs plus the bias is calculated (as we've done before)
- Then, the activation function is applied on the result

Score Function

Loss Function

- The loss function/gradients are slightly more complex
- We need to calculate the loss and gradients for the output layer first (in the same way as we did before)
- The gradients are then backpropagated into the hidden layer
- The loss for both layers are summed

Loss Function

Output Layer

$\mathbf{W}_{\mathbf{0}}$		
0.02	0.03	-0.1
0.3	0.5	-0.05
0.1	0.0	-0.3

Gradients

Gradients

Output Layer

Gradients

Output Layer

Loss Function

Hidden Layer

Gradients

Hidden Layer

Gradients

Hidden

Gradients

Hidden Layer

Regularization

- Regularization is added to loss and gradients in the output and hidden layer as before
- The total loss is the loss for the output plus the loss for the hidden layer

Weights Upgrades

$\mathbf{W}_{\mathbf{h}}$			
0.01	-0.05	0.1	0.05
0.7	0.2	0.05	0.16
0.0	-0.45	-0.2	0.03

$\mathbf{d W} \mathbf{h}$

0.0	0.0	0.0	0.0
-1.90	2.79	-5.59	7.11
-2.43	3.56	7.13	9.07

newW ${ }_{\text {h }}$

$=$| 0.01 | -0.05 | 0.10 | 0.05 |
| :---: | :---: | :---: | :---: |
| 0.89 | -0.08 | 0.61 | -0.55 |
| 0.24 | -0.81 | 0.51 | -0.88 |

Bias Upgrades

	new $_{\mathbf{h}}$
$=$0.0 0.19 -0.32	

Summary

- The linear classifier has now been extended to contain a hidden layer with ReLU nodes
- The hidden layer enables the classifier to learn categories that are not linearly separable

Non-linearly separable categories

