
Lecture#6

Kernel Methods and SVMs

Kernel Methods and SVMs

• In this lecture we will cover the linear kernel classifier that

forms the basis for more advanced kernel methods

classifiers,

• … which in turn is an essential part of the very advanced

and powerful classifier Support-Vector Machine (SVM)

• We will use the Flame dataset as example in this lecture:

Flame dataset

• Generated dataset with two numerical attributes (x
and y) and two categories (0 and 1)

• 240 examples

• Toy problem, not a real-world dataset

Flame dataset

Flame dataset

240 examples

Linear Kernel Classifier

Linear Kernel Classifier

• The linear kernel classifier works like this:

– Calculate a center point for each category by calculating the

average of each attribute value, for all examples in that

category

– When classifying an example, the category of the closest

center point is returned

– Euclidean distance is commonly used as distance measure:

Testing it

• We train and test the model on the Flame dataset

• Result:

Dot-product

• We can use another measure of closeness based on

vectors and dot-products

• A vector consists of a magnitude and direction, and is

usually drawn as an arrow in a plane:

x

(2,3)

y

Dot-product

• The vector is defined by its ending point: x = 2 and y = 3

• Vectors in 3D space then consists of an x, y and a z

value

• The dot-product is a single numerical value calculated as

the sum of the products between each value in the first

vector and the corresponding value in the second vector:

dot = v00 * v10 + v01 * v11 + ... + v0n * v1n

Meaning of the dot-product

• The dot-product is equal to the length of the two

vectors multiplied together, multiplied by the cosine

of the angle between the two vectors

• This has an important implication:
– If the angle is greater than 90 degrees, the dot-product will

be negative

– If the angle is between 0 to 90 degrees, the dot-product will

be positive

• How can this be used to calculate closeness?

Closeness using dot-product

C1

• Assume we have two center points C0 and C1

• We define a vector C0C1 as the vector between C0 and

C1

• We calculate A as the middle point between C0 and C1

by calculating (C1 - C0) /2

C0

A

Closeness using dot-product

• We want to classify an example X1 located as shown
in the figure

• We define a vector X1A going from X1 toA

C1

X1

C0

A

Closeness using dot-product

• Assume that the angle between the vectors C0C1 and

X1A is 45 degrees

• This is less than 90 degrees, therefore the dot-product is

positive

• The sign tells us that X1 is

closer to C0 than C1 C0

C1

A

X1

450

Closeness using dot-product

• If we have another example X2 located as shown in the

figure, assume the angle between C0C1 and X2A is 135

degrees

• This is more than 90 degrees, therefore the dot-product is

negative

• The sign tells us that X2 is

closer to C1 than C0

C0

C1

C X2

1350

Closeness using dot-product

• The formula for finding the category is:
category = sign[(X – A) (C1 – C0)]

• A is calculated as (C1 - C0) / 2
category = sign[(X – (C1 – C0) / 2) (C1 – C0)]

• This can be simplified to:

category = sign[(X C0 – X C1 + (C1 C1 – C0 C0) / 2]

Testing
i

t
• We train and test the model on the Flame dataset

• Dot-product is used for closeness instead of Euclidean
distance

• Result:

Actually equal to Euclidean

Notes on the result

• Even if we tested on the same data as we trained
the classifier, the accuracy was rather low: 87.50%

• This is because the classifier only finds a dividing

line between the two categories

• If there isn’t a straight line divided the categories, the

classifier will not be very accurate

Almost linearly separable

Not linearly separable

Bad linear separation

• Where would the average points be for each
category?

• It turns out that they will be placed at almost the

exact same location

• A linear classifier is therefore unable to distinguish

between the two categories

Kernel Classifier

Data transformation

• Let’s see what happens if we square every x and y
value

• A point at (-1, 2) in XY-space will now be at (1, 4) in

X2Y2-space

• If we do this for all data points and plot them again,

the result will look like:

Data transformation

Data transformation

• All examples belonging to one category has now
moved to the lower left corner

• It is now possible to divide

the categories with a straight

line!

Data transformation

• So, if we can find a transformation to a space where

the data can be divided by a straight line we can use

the linear classifier on the transformed data

• The problem is that in many real-world datasets it
can be very difficult to find the right transformation

• Simply calculating the square of each value doesn’t

work for all datasets

• The classifier must find the unique transformation for
each dataset!

The Kernel Trick

• Searching for the right transformation is not possible

• There are an endless number of possible

transformations, and testing them all takes too long

time

• Luckily we have something called the kernel trick,

which works on any algorithm that uses dot-products

for closeness

• This includes our linear classifier!

The Kernel Trick

• We can replace the dot-product function with a new
function,

• … that returns what the dot-product would have

been if the data had first been transformed to a

higher dimensional space

• In practice there are only a few transformations used

• The probably most common one is the radial-basis
function

Radial-basis function

• The radial-basis function is similar to the dot-product in that it

takes two vectors as in parameters and returns a value

• It is however not linear, and therefore can divide more complex
spaces

• The RBF function looks like this:

The gamma parameter

can be adjusted to get the

best separation for a data

set

RBF in code

i2, double gamma)

i1 and i2

double RBF (Instance i1, Instance

//Find squared distance between

double sq_dist = 0

for (int a : numAttributes)

sq_dist += pow(i1[a] – i2[a], 2)

//Calculate RBF value

double rbf = pow(E, -gamma * sq_dist)

return rbf

The Kernel Trick

• Now we need a function that calculates the distances

from the average points in the transformed space

• We can’t do this, since we don’t know the locations of the

points in the transformed space

• This is where the kernel tricks comes in:

– Averaging a set of vectors and taking the dot-product of the

average with vector A

– … gives the same result as:

– Averaging the dot-products of vector A with every vector in the set

The Kernel Trick

• So, instead of calculating the dot-product between
example X and the average for a category,

• … we can calculate the radial-basis function

between X and every other example belonging to the

category,

• … and then average the result

int classify (Instance i)

//Define variables

float sum0, sum1, count0, count1

//Iterate over all training instances

//and calculate RBF values

for (Instance t :

trainingset) if (t.category

== C0)

sum0 += RBF(i, t,

gamma) count0++

if (t.category == C1)

sum1 += RBF(i, t,

gamma) count1++

//Calculate y-value

y = (1/count0)*sum0 - (1/count1)*sum1 + offset

//Check sign for

result if (y > 0)

return C0 else return

C1

The algorithm

The algorithm in code

• The algorithm uses an offset value.

• Calculating this is quite time consuming,

• … so we should calculate it once during the training

step and feed it to the classify step each time we

want to classify a new example

• The code for doing this looks like:

float calc_offset ()

//Define lists

List<Instance> l0, l1

each class//Divide the training dataset for

for (Instance t : trainingset)

if (t.category == C0)

l0.add(t)

if (t.category == C1)

l1.add(t)

Calculate offset

Non-linear Kernel Classifier

• The result is a non-linear kernel classifier

• It can divide categories that are not linearly

separable

• So, how good is it?

Testing
i

t
• We train and test the RBF classifier on the Flame

dataset

• Result:

Better than before!

Multiclass RBF classification

• Still uses binary classification (two categories)

• The multiclass problem is reduced to a number of

multiple binary classification problems

• We need a strategy to decide which binary
combination that “wins”

• We will not dig further into this in this lecture

Support Vector Machines

Support-Vector Machine

• Consider the following data:

Support-Vector Machines

• The line is the dividing line using averages of
categories

• One example is misclassified since it is on the wrong

side of the dividing line

• In this example, most examples are

far away from the line and is

therefore not relevant for

classification

Support-Vector Machines

• This is a problem for both a linear or kernel method
classifier

• To solve this, we must use a Support-Vector

Machine

• The work by finding the line that is as far away as

possible from each of the categories

• This line is called the maximum-margin hyperplane:

Maximum-margin hyperplane

Finding the Maximum-margin hyperplane

• Conceptually, finding the maximum-margin
hyperplane is done by:

– Draw imaginary lines between all examples of a category

– Repeat for all categories

– The outer lines are called the convex hull

– It is defined as the tightest polygon enclosing the examples
in a category

– The hyperplane is placed exactly between the convex hulls

of the two categories

Draw imaginary lines

Find the convex hulls

Find the shortest line between the hulls

Place the hyperplane between the hulls

d

d

Support Vectors

• As can be seen in the figure, we don’t need all
examples to define the hyperplane

• We only need the closest examples for each

category

• These are called the Support Vectors:

Support Vectors

Back to the example

Support Vectors

Maximum-margin
hyperplane

Support Vector Machines

• Algorithms for finding the maximum-margin
hyperplane are very complex

• In this course, we will learn how to use a very

common library for Support Vector Machines:

– libsvm

– https://github.com/cjlin1/libsvm

Using libsvm

• The first thing to do in the training step is to convert the dataset

to the data structures used by libsvm:

Using libsvm

• After converting the data, training the model is simple:

Using libsvm

• Classifying an example also involves some data

conversion:

Using libsvm

• Classifying the examples is then simple:

Testing it

• We train and test the model on the Flame dataset

• Result:

Best result!

When to use SVMs

• Support Vector Machines are very powerful classifiers which

have successfully been used for a number of complex tasks:

– Classifying facial expressions

– Detecting intruders using datasets from the military

– Predicting the structure of proteins from their DNA sequences

– Handwriting recognition

• Finding good parameters can however be tricky, and using

wrong parameters can result in very bad accuracy

• Which parameters to use depends on the dataset

Weka

• Weka uses libsvm for its SVM classifier

• The library is not included in the Weka package, so

you need to install it in the package manager

Weka result

R

• R also supports SVM

• It is part of the machine learning package Caret

• R uses csv format (comma separated values) with or
without header

R script

#Load the ML

library

library(caret)

#Read the dataset

dataset <- read.csv(”flame.csv")

#setup 10-fold cross validation

control <- trainControl(method="cv",

number=10) metric <- "Accuracy"

#Train

model

set.seed(7)

svm <- train(class~., data=dataset, method="svmRadial",

metric=metric, trControl=control)

#Print

result

print(svm)

R result

Support Vector Machines with Radial Basis Function Kernel

240 samples

2 predictor

2 classes: 'C0', 'C1'

No pre-processing

Resampling: Cross-Validated (10 fold)

Summary of sample sizes: 216, 216, 216, 216, 217, 216, ...

Resampling results across tuning parameters:

C Accuracy Kappa

0.25 0.9958333 0.9909091

0.50 0.9873188 0.9725064

1.00 0.9873188 0.9725064

