
Lecture#6

Kernel Methods and SVMs



Kernel Methods and SVMs

• In this lecture we will cover the linear kernel classifier that  

forms the basis for more advanced kernel methods  

classifiers,

• … which in turn is an essential part of the very advanced  

and powerful classifier Support-Vector Machine (SVM)

• We will use the Flame dataset as example in this lecture:



Flame dataset

• Generated dataset with two numerical attributes (x  
and y) and two categories (0 and 1)

• 240 examples

• Toy problem, not a real-world dataset



Flame dataset



Flame dataset

240 examples



Linear Kernel Classifier



Linear Kernel Classifier

• The linear kernel classifier works like this:

– Calculate a center point for each category by calculating the  

average of each attribute value, for all examples in that  

category

– When classifying an example, the category of the closest  

center point is returned

– Euclidean distance is commonly used as distance measure:



Testing it

• We train and test the model on the Flame dataset

• Result:



Dot-product

• We can use another measure of closeness based on

vectors and dot-products

• A vector consists of a magnitude and direction, and is  

usually drawn as an arrow in a plane:
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Dot-product

• The vector is defined by its ending point: x = 2 and y = 3

• Vectors in 3D space then consists of an x, y and a z  

value

• The dot-product is a single numerical value calculated as  

the sum of the products between each value in the first  

vector and the corresponding value in the second vector:

dot = v00 * v10 + v01 * v11 + ... + v0n * v1n



Meaning of the dot-product

• The dot-product is equal to the length of the two  

vectors multiplied together, multiplied by the cosine  

of the angle between the two vectors

• This has an important implication:
– If the angle is greater than 90 degrees, the dot-product will  

be negative

– If the angle is between 0 to 90 degrees, the dot-product will  

be positive

• How can this be used to calculate closeness?



Closeness using dot-product

C1

• Assume we have two center points C0 and C1

• We define a vector C0C1 as the vector between C0 and  

C1

• We calculate A as the middle point between C0 and C1 

by calculating (C1 - C0) /2

C0

A



Closeness using dot-product

• We want to classify an example X1 located as shown  
in the figure

• We define a vector X1A going from X1 toA

C1

X1

C0

A



Closeness using dot-product

• Assume that the angle between the vectors C0C1 and  

X1A is 45 degrees

• This is less than 90 degrees, therefore the dot-product is  

positive

• The sign tells us that X1 is  

closer to C0 than C1 C0

C1

A

X1

450



Closeness using dot-product

• If we have another example X2 located as shown in the

figure, assume the angle between C0C1 and X2A is 135

degrees

• This is more than 90 degrees, therefore the dot-product is  

negative

• The sign tells us that X2 is  

closer to C1 than C0

C0

C1

C X2

1350



Closeness using dot-product

• The formula for finding the category is:
category = sign[ (X – A)  (C1 – C0) ]

• A is calculated as (C1 - C0) / 2
category = sign[ (X – (C1 – C0) / 2)  (C1 – C0) ]

• This can be simplified to:

category = sign[ (X  C0 – X  C1 + (C1  C1 – C0  C0) / 2 ]



Testing
i

t
• We train and test the model on the Flame dataset

• Dot-product is used for closeness instead of Euclidean  
distance

• Result:

Actually equal to Euclidean



Notes on the result

• Even if we tested on the same data as we trained  
the classifier, the accuracy was rather low: 87.50%

• This is because the classifier only finds a dividing  

line between the two categories

• If there isn’t a straight line divided the categories, the  

classifier will not be very accurate



Almost linearly separable



Not linearly separable



Bad linear separation

• Where would the average points be for each  
category?

• It turns out that they will be placed at almost the  

exact same location

• A linear classifier is therefore unable to distinguish  

between the two categories



Kernel Classifier



Data transformation

• Let’s see what happens if we square every x and y
value

• A point at (-1, 2) in XY-space will now be at (1, 4) in  

X2Y2-space

• If we do this for all data points and plot them again,  

the result will look like:



Data transformation



Data transformation

• All examples belonging to one category has now  
moved to the lower left corner

• It is now possible to divide  

the categories with a straight  

line!



Data transformation

• So, if we can find a transformation to a space where

the data can be divided by a straight line we can use

the linear classifier on the transformed data

• The problem is that in many real-world datasets it  
can be very difficult to find the right transformation

• Simply calculating the square of each value doesn’t  

work for all datasets

• The classifier must find the unique transformation for
each dataset!



The Kernel Trick

• Searching for the right transformation is not possible

• There are an endless number of possible  

transformations, and testing them all takes too long  

time

• Luckily we have something called the kernel trick,  

which works on any algorithm that uses dot-products  

for closeness

• This includes our linear classifier!



The Kernel Trick

• We can replace the dot-product function with a new  
function,

• … that returns what the dot-product would have

been if the data had first been transformed to a

higher dimensional space

• In practice there are only a few transformations used

• The probably most common one is the radial-basis  
function



Radial-basis function

• The radial-basis function is similar to the dot-product in that it  

takes two vectors as in parameters and returns a value

• It is however not linear, and therefore can divide more complex  
spaces

• The RBF function looks like this:

The gamma parameter  

can be adjusted to get the  

best separation for a data  

set



RBF in code

i2, double gamma)  

i1 and i2

double RBF (Instance i1, Instance

//Find squared distance between  

double sq_dist = 0

for (int a : numAttributes)  

sq_dist += pow(i1[a] – i2[a], 2)

//Calculate RBF value

double rbf = pow(E, -gamma * sq_dist)

return rbf



The Kernel Trick

• Now we need a function that calculates the distances  

from the average points in the transformed space

• We can’t do this, since we don’t know the locations of the  

points in the transformed space

• This is where the kernel tricks comes in:

– Averaging a set of vectors and taking the dot-product of the  

average with vector A

– … gives the same result as:

– Averaging the dot-products of vector A with every vector in the set



The Kernel Trick

• So, instead of calculating the dot-product between  
example X and the average for a category,

• … we can calculate the radial-basis function  

between X and every other example belonging to the  

category,

• … and then average the result



int classify (Instance i)

//Define variables

float sum0, sum1, count0, count1

//Iterate over all training instances

//and calculate RBF values

for (Instance t :  

trainingset) if (t.category  

== C0)

sum0 += RBF(i, t,  

gamma) count0++

if (t.category == C1)

sum1 += RBF(i, t,  

gamma) count1++

//Calculate y-value

y = (1/count0)*sum0 - (1/count1)*sum1 + offset

//Check sign for  

result if (y > 0)  

return C0 else return  

C1

The algorithm



The algorithm in code

• The algorithm uses an offset value.

• Calculating this is quite time consuming,

• … so we should calculate it once during the training  

step and feed it to the classify step each time we  

want to classify a new example

• The code for doing this looks like:



float calc_offset ()

//Define lists  

List<Instance> l0, l1

each class//Divide the training dataset for  

for (Instance t : trainingset)

if (t.category == C0)

l0.add(t)

if (t.category == C1)  

l1.add(t)

Calculate offset



Non-linear Kernel Classifier

• The result is a non-linear kernel classifier

• It can divide categories that are not linearly  

separable

• So, how good is it?



Testing
i

t
• We train and test the RBF classifier on the Flame  

dataset

• Result:

Better than before!



Multiclass RBF classification

• Still uses binary classification (two categories)

• The multiclass problem is reduced to a number of  

multiple binary classification problems

• We need a strategy to decide which binary  
combination that “wins”

• We will not dig further into this in this lecture



Support Vector Machines



Support-Vector Machine

• Consider the following data:



Support-Vector Machines

• The line is the dividing line using averages of  
categories

• One example is misclassified since it is on the wrong  

side of the dividing line

• In this example, most examples are  

far away from the line and is  

therefore not relevant for  

classification



Support-Vector Machines

• This is a problem for both a linear or kernel method  
classifier

• To solve this, we must use a Support-Vector  

Machine

• The work by finding the line that is as far away as  

possible from each of the categories

• This line is called the maximum-margin hyperplane:



Maximum-margin hyperplane



Finding the Maximum-margin hyperplane

• Conceptually, finding the maximum-margin  
hyperplane is done by:

– Draw imaginary lines between all examples of a category

– Repeat for all categories

– The outer lines are called the convex hull

– It is defined as the tightest polygon enclosing the examples  
in a category

– The hyperplane is placed exactly between the convex hulls  

of the two categories



Draw imaginary lines



Find the convex hulls



Find the shortest line between the hulls



Place the hyperplane between the hulls

d

d



Support Vectors

• As can be seen in the figure, we don’t need all  
examples to define the hyperplane

• We only need the closest examples for each  

category

• These are called the Support Vectors:



Support Vectors



Back to the example

Support Vectors

Maximum-margin  
hyperplane



Support Vector Machines

• Algorithms for finding the maximum-margin  
hyperplane are very complex

• In this course, we will learn how to use a very  

common library for Support Vector Machines:

– libsvm

– https://github.com/cjlin1/libsvm



Using libsvm

• The first thing to do in the training step is to convert the dataset  

to the data structures used by libsvm:



Using libsvm

• After converting the data, training the model is simple:



Using libsvm

• Classifying an example also involves some data  

conversion:



Using libsvm

• Classifying the examples is then simple:



Testing it

• We train and test the model on the Flame dataset

• Result:

Best result!



When to use SVMs

• Support Vector Machines are very powerful classifiers which  

have successfully been used for a number of complex tasks:

– Classifying facial expressions

– Detecting intruders using datasets from the military

– Predicting the structure of proteins from their DNA sequences

– Handwriting recognition

• Finding good parameters can however be tricky, and using  

wrong parameters can result in very bad accuracy

• Which parameters to use depends on the dataset



Weka

• Weka uses libsvm for its SVM classifier

• The library is not included in the Weka package, so  

you need to install it in the package manager



Weka result



R

• R also supports SVM

• It is part of the machine learning package Caret

• R uses csv format (comma separated values) with or  
without header



R script

#Load the ML  

library  

library(caret)

#Read the dataset

dataset <- read.csv(”flame.csv")

#setup 10-fold cross validation

control <- trainControl(method="cv",  

number=10) metric <- "Accuracy"

#Train  

model  

set.seed(7)

svm <- train(class~., data=dataset, method="svmRadial",  

metric=metric, trControl=control)

#Print  

result  

print(svm)



R result

Support Vector Machines with Radial Basis Function Kernel

240 samples

2 predictor

2 classes: 'C0', 'C1'

No pre-processing

Resampling: Cross-Validated (10 fold)

Summary of sample sizes: 216, 216, 216, 216, 217, 216, ...  

Resampling results across tuning parameters:

C Accuracy Kappa

0.25 0.9958333 0.9909091

0.50 0.9873188 0.9725064

1.00 0.9873188 0.9725064


