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Numerical Regression



Numerical Regression

• A common type of machine learning task is when we  
have numerical features…

• … and want to predict a continuous variable  

(number)

• Typical tasks are to estimate:

– The price of a new product based on existing products

– Stock market predictions

– …



Price Models

• One algorithm that is very effective for numerical  
regression is K-nearest neighbor

• In K-nearest Neighbor (KNN), all attributes must be  

numeric

• Nominal attributes can be translated to numeric in a  

pre-processing step

• If we have two categories, harddrive and SSD, we  
can use 0 for harddrive and 1 for SSD



Important variables

• When building price models it is important to  
determine which variables that affect the price

• Example: “is processor speed a good indicator for  

laptop price?”

• Variables such as RAM and screen size likely has  

large impact on the price

• If the laptop comes bundled with free software or not  
probably have low impact on the price



Example dataset

• We will use a simple dataset where the task is to predict the  

price of a TV based on:

– Screen size in inches

– Screen type {Full HD, 4K, OLED}

– Customer rating

• The screen type variable is nominal and must be translated to  

a numerical variable

• The following translation is used:

– 1: Full HD

– 2: 4K

– 3: OLED



Example dataset
ScreenSize ScreenType Rating Price

55 2 3.9 5495

55 2 3.8 5990

50 1 4.5 6495

55 2 4.4 6990

58 1 4.0 7490

50 2 4.4 7590

55 2 4.2 7990

55 1 4.5 7990

55 1 4.3 7990

55 2 4.1 7995

… … … …

55 3 4.7 16790

55 3 4.8 23990

55 3 4.3 24790

55 3 4.0 29990



K-nearest neighbor

• What would you do if you manually shall guess the  
price of a new TV?

• A common approach is to find TVs similar to the one  

you shall guess the price for,

• , …then take an average of the prices of the similar  

TVs

• Now you have a reasonably good guess!

• This is exactly how KNN works!



K-nearest neighbor

• In KNN, you search for the k most similar examples in the  

training dataset

• A k value between 3 and 5 is quite common, but you can  
experiment with other k values

• The predicted price is then the average price for the k  

examples

• Using k = 1 only picks the nearest example, but that is rarely  

useful

• Some items are cheaper or more expensive than they should  

be, and using a k larger than 1 reduces the effect of this



Example data

ScreenSize

58

55

50

49

47

1 2 3 4 5
Rating



Example classification, k = 3

ScreenSize

1 2 3 4 5
Rating

5690
58

5990

55

5890

50

49

47

Price for the new example is:  
(5690 + 5990 + 5890) / 3 = 5857



Similarity

• In KNN, Euclidean distance is commonly used to  
calculate the distance between examples:



Training and Classification

• No actual training is done in KNN

• It simply stores the training data in the main memory or a  

data base

• All computation is done when classifying an example

• The drawback is that classification is slower compared to  

other algorithms that train a prediction model

• An advantage is that we can add more training data when  

the system is up and running, which many other  

algorithms don’t support



Introducing weights

• So far, the algorithm calculates the average of the k  
nearest neighbors

• Depending on how the data is distributed, some  

neighbors can be very far from the example while  

others are very close

• To account for this, we can introduce a weight for  

each neighbor based on the distance

• A weighted average price is then calculated

• We will look at two ways of weighting neighbors:



Inverse Function

• The inverse function returns a value of 1 divided by the  

distance

• The problem is that very small distances can lead to very high  
or infinite weights due to how the inverse function works

• To get around this, we add a small number to the distance  

before inverting it:



Gaussian Function

• The second way is to use the Gaussian function,  
also known as a bell curve

• The weight is 1 when the distance is 0, and  

gradually declines as the distance increased.

• The weight will however never fall to 0, so we will  

never have problems with 0 weights

• The Gaussian function looks like this:



Gaussian Function



Adding weights to KNN

• The price for each example is multiplied by the  
weight
– Using the distance between the training examples and the  

example we want to classify

• The average price is then divided by the sum of the  
weights



Testing it

• We use a KNN with k = 5 and the TV dataset (attributes  

ScreenSize, ScreenType and Rating).

• The task is to find a price for a new TV where the  

attributes are known:

– {ScreenSize = 55, ScreenType = 1, Rating = 4.0}

• Result:



Laptop dataset

• A second dataset has been generated from laptops  
sold at Elgiganten.se

• The following attributes are used:

– ScreenSize (13.3”)

– ProcessorSpeed (2.10)

– Cores (2)

– RAM (4)

– StorageType (0 for harddrive, 1 for SSD)

– StorageSize (256)



Laptop dataset

• A part of the laptop dataset looks like this:

Screen  
Size

Processor  
Speed

Cores RAM Storage  
Type

Storage  
Size

Price

14 1.60 2 4 1 128 3495

15.6 1.60 2 4 0 500 3495

10.1 1.44 4 2 1 64 3695

15.6 2.10 2 8 1 128 3695

15.6 1.70 2 4 1 128 3995

15.6 2.00 4 4 1 128 3995

15.6 2.40 2 8 1 256 4490

13.3 1.90 2 4 0 500 5495

14 2.40 2 4 1 356 5996



Testing it

• Task: find the price of the example:

– {15.6, 2, 2, 4, 1, 128}

• Result:



Heterogeneous Variables

• Consider the TV dataset

• The values for screen size (47-58”) are much higher  

than the values for rating (1-5)

• Therefore, the screen size attribute has much higher  
impact on the distance than the rating attribute

• To get around this we can normalize attributes to be  

of similar range, for example between 0 and 1



When to use KNN

• The major drawback of KNN is that classification is  

computationally expensive

• It also has high memory requirements since no model is  

built from the training data

• An advantage is that new training examples can be  

added after the initial training

• It is also easy to interpret how the algorithm makes its  

decisions

• KNNs are best used when you have numerical inputs and  

the slow classification time is not a problem



Classification Tasks

• KNN can also be used if we have categories

• We then return the most frequent category among  

the k nearest neighbors

• The attributes must be numeric, or translated to  
numbers

– A = 1, B = 2, C = 3, …


