
Lecture#3

Text Classification

Document Classification

• A very common machine learning problem is to classify a

document based on its text contents

• We use the text contents as input to a machine learning

algorithm, and outputs which category the document (most

likely) belongs to

• The (probably) earliest and most common application is spam

detection

• We want to classify if an email is spam or not based on the text

contents of the email

• Spam filtering can also be used for entries and comments on

blogs and social media

Spam Filtering

• The early systems for spam detection were based on rules

• Programmers manually designed a set of rules that could
detect spam

• Rules could for example detect:

– Overuse of capital letters

– Words related to pharmaceutical products or Rolex watches

– Overuse of eye-catching colors

– …

• The biggest problem with this approach was that spammers

learned about the rules and created spam that could

circumvent them

Spam Filtering

• Another problem is that what is spam or not depends
on the user

• Advertising of drugs could be normal for a

pharmacist, but unwanted for a programmer

• Therefore, we need a spam filter that can learn!

• Modern spam filters also take into consideration the

sender of an email, but that is out of scope for us

• We are only interested in the text contents

Learning to classify text

• There are several algorithms that can be used for text

classification:
– Artificial Neural Networks

– Support Vector Machines

– K-nearest Neighbor algorithms

– Decision Trees

– Approaches based on natural language processing

– …

• We will focus on a simple, powerful and very common

algorithm: Naïve Bayes

Bayes’ theorem

• First, we need to learn about Bayes’ theorem

• It describes the probability of an event, based on prior

knowledge of conditions that might be related to the

event

• Bayes’ theorem is stated using the following formula:

• … where P(A|B) shall be interpreted as

”probability that A occurs given B”

• It is best explained using an example:

Example

• We are interested in

”is a stiff neck a good sign of being a good FIFA player?”

• To answer this using Bayes’ theorem we need to know

the prior probabilities:

– 50% of the good FIFA players have a stiff neck:

P(stiff | good) = 0.5

– One in 50000 players is good at FIFA:

P(good) = 1/50000

– One in 20 players suffer from a stiff neck:

P(stiff) = 1/20

Example

• We can now use the prior probabilities:

– P(stiff | good) = 0.5 P(good) = 1/50000 P(stiff) = 1/20

• … to calculate the probability of being a good FIFA player

if you have a stiff neck:

Example

• Given the prior probabilities:

– P(stiff | good) = 0.5 P(good) = 1/50000 P(stiff) = 1/20

• … we can use Bayes’ theorem to say that it is a

probability of 0.0002 that a player is good at FIFA if he

has a stiff neck

• Or that one in 5000 players with stiff necks is good

at FIFA

Naïve Bayes

• Bayes’ theorem only takes on attribute into consideration (stiff neck)

when calculating the probability of belonging to a specific category

(good FIFA player)

• In most real-world applications we have more than one attribute:

– stiff neck

– good gamepad

– large TV

– …

• We need a way of combining several inputs to get a probability of

belonging to a specific category

• This is handled by the Naïve Bayes classifier

Naïve Bayes

• The classifier is called naïve because it assumes that the

attributes are independent of each other

• It means that the probability of one attribute belonging to a

specific category is completely unrelated to the probability of

other attributes belonging to that category

• There are no relation between attributes

• This is actually a false assumption

• Example: ”money” is a better spam indicator if in combination

with ”casino” than with ”programming”

Naïve Bayes

• The independence between attributes means that the actual

probability calculated by the Naïve Bayes classifier is

inaccurate

• You cannot say that the resulting probability is the actual

probability that a document belongs to a category

• We can however compare the results of the document belong

to different categories, and see which has the highest

probability

• This works surprisingly well for real-world document

classification problems

Naïve Bayes classification

1. Calculate the frequencies of each attribute
belonging to each category

2. For each category:

1. Multiply the conditional probability of each attribute into a
product

2. Multiply the product with the category probability

3. Classify the document as belonging to the category

with the highest probability

Let’s look at an example!

Example dataset

Game pad? Stiff neck? Player skill

Great Yes Good

Average Yes Good

Junk Yes Good

Average No Good

Junk No Bad

Average No Bad

Great Yes Bad

Average No Bad

Average No Bad

Frequency table

• First step is to generate a frequency table:

Game Pad? Stiff neck? Player skill?

Good Bad Good Bad Good Bad

Great 1 1 Yes 3 1 4 5

Average 2 3 No 1 4

Junk 1 1

Prior probabilities

• We continue filling the table with prior probabilities:

Game Pad? Stiff neck? Player skill?

Good Bad Good Bad Good Bad

Great 1 1 Yes 3 1 4 5

Average 2 3 No 1 4

Junk 1 1

P(Great | x) 1/4 1/5 P(Yes | x) 3/4 1/5 4/9 5/9

P(Avg | x) 2/4 3/5 P(No | x) 1/4 4/5

P(Junk | x) 1/4 1/5

Classification

• The table is all we need for classification

• Now we can answer questions like:

– ”A player has an average game pad and a stiff neck. Is he a good

or bad player?”

– ”A player has a great game pad and not a stiff neck. Is he a good

or bad player?”

• We have two possible categories, the player being Good or

Bad

• Let’s calculate the probabilities of the above mentioned player

belonging to the two categories:

Classification

• Classify the player:

– {game pad = average, stiff neck = yes}

• Probability that the player is Good:

P(Good) * P(average | Good) * P(yes | Good) = 4/9 * 2/4 * 3/4 = 0.1667

• Probability that the player is Bad:

P(Bad) * P(average | Bad) * P(yes | Bad) = 5/9 * 3/5 * 1/5 = 0.0667

• It is a higher probability for good than bad, so we classify

the player as good!

Classification

• Classify the player:

– {game pad = great, stiff neck = no}

• Probability that the player is Good:

P(Good) * P(great | Good) * P(no | Good) = 4/9 * 1/4 * 1/4 = 0.0278

• Probability that the player is Bad:

P(Bad) * P(great | Bad) * P(no | Bad) = 5/9 * 1/5 * 4/5 = 0.0889

• It is a higher probability for bad than good, so we classify

the player as bad!

Threshold

• In many applications it is better to return a ”don’t know” than a
misclassified document

• In spam filtering, it is more important to avoid having legitimate email

classified as spam than to catch every single spam message

• This can be solved by using a threshold

• If we use a threshold of 3 means that the probability for the highest

category must be at least 3 times higher than the probability of the

other category, otherwise the classifier is unsure

• In our examples we used a threshold of 1, meaning that we always

classify as the highest category regardless of the difference in

probabilities

The examples using threshold

{game pad = average, stiff neck = yes}

P(Good) P(Bad) Ratio Threshold Classified as

0.1667 0.0667 2.499 1 Good

0.1667 0.0667 2.499 3 Don’t know

{game pad = great, stiff neck = no}

P(Good) P(Bad) Ratio Threshold Classified as

0.0278 0.0889 3.198 1 Bad

0.0278 0.0889 3.198 3 Bad

Variants of Naïve Bayes

• The approach described here is called Multinomial Naïve

Bayes

• There are a number of other variants of Naïve Bayes, mainly

Gaussian and Bernoulli

• In Bernoulli, we don’t count the actual frequency of an attribute

in a category

• Instead we use 1 if the attribute appears in any document

belonging to the category, and 0 otherwise

• In Gaussian, we assume that attributes are numeric and follow

a normal distribution

Text classification

• In the examples we have seen so far we have had two

attributes:

– Game pad: {great, average, junk}

– Stiff neck: {yes, no}

• In document classification, we have to classify texts of different

length

• To do this we first have to convert the text contents of each

document to a bag-of-words

• Then we have to count the frequency and calculate the

probability that each word belongs to each category

• Let’s look at an example:

Example dataset

Text Spam?

Buy cheap Rolex? Yes

You want Viagra? Yes

Can you buy milk? No

I want candy tonight No

Want to go to the gym? No

Example dataset

Text Spam?

Buy cheap Rolex? Yes

You want cheap Viagra? Yes

Can you buy milk? No

Want candy tonight? No

Gym tonight? No

• The unique words are (special characters removed):
• buy, cheap, rolex, you, want, viagra, can, milk, candy, tonight, gym

• Next step is to create a frequency matrix

Example dataset

Spam?

Yes No Yes No Yes No

buy 1 1 can 0 1 2 3

cheap 2 0 milk 0 1

rolex 1 0 candy 0 1

you 1 1 tonight 0 1

want 1 1 gym 0 1

viagra 1 0

Example dataset

Spam?

Yes No Yes No Yes No

buy 1 1 can 0 1 2 3

cheap 2 0 milk 0 1

rolex 1 0 candy 0 1

you 1 1 tonight 0 1

want 1 1 gym 0 1

viagra 1 0 2/5 3/5

P(buy | x) 1/2 1/3 P(can | x) 0/2 1/3

P(cheap | x) 2/2 0/3 P(milk | x) 0/2 1/3

P(rolex | x) 1/2 0/3 P(candy | x) 0/2 1/3

P(you | x) 1/2 1/3 P(tonight | x) 0/2 1/3

P(want | x) 1/2 1/3 P(gym | x) 0/2 1/3

P(viagra | x) 1/2 0/3

Classification

• Now you want to classify the text

”buy cheap candy”

• As in the previous examples, we calculate the probability for
being spam or not being spam:

P(yes) * P(buy | yes) * P(cheap | yes) * P(candy | yes) = 2/5 * 1/2 * 2/2 * 0/2 = 0

• Here we can see a problem: if a word has never showed up in

a category, we multiply with a 0 and the result will always be

0…

• To solve this we can apply Laplace correction:

Laplace correction

• In Laplace correction we always add some constant value to

each probability to avoid 0 probabilities

• If we use 1/3 as Laplace correction the probability for being
spam looks like:

P(yes) * P(buy | yes) * P(cheap | yes) * P(candy | yes) =
= 2/5 * (1/2+1/3) * (2/2+1/3) * (0/2+1/3) =

= 0.4 * 0.833 * 1.333 * 0.333 = 2.9

• And for not being spam:

P(no) * P(buy | no) * P(cheap | no) * P(candy | no) =
= 3/5 * (1/3+1/3) * (0/3+1/3) * (1/3+1/3) =

= 0.6 * 0.667 * 0.333 * 0.667 = 0.089

• This message is classified as spam!

Spam or not?

• The text ”buy cheap candy” was clearly classified as spam

• Is this correct?

• The word that is most prominent in the result is ”cheap”, which

exists in 2 of 2 spam and 0 of 3 legitimate messages

• If ”cheap” is not a good indicator for spam, we need more

training data where cheap appears in legitimate message

• We need quite large amounts of data for text classification to

be accurate

Weka

Weka

• Weka is a collection of machine learning algorithms

• It consists of a GUI tool and an API library

• It has been around for several years and has been
used in numerous projects

• Weka can be downloaded at

https://www.cs.waikato.ac.nz/ml/weka/

• We will now take a look at how we can use Weka to
classify the Wikipedia dataset

http://www.cs.waikato.ac.nz/ml/weka/

Wikipedia dataset

• We will use a subset of the Wikipedia dataset

consisting of 35 articles about programming, and 35

about video games.

• All tags and code has been removed and the text
has been converted to a bag-of-words

• The data is stored in an arff file

• Arff (attribute-relation file format) is the format Weka
uses for data files

Arff file

• The first part in the arff files defines a name for the

classification task, and each attribute with their respective

type:

@relation Wikipedia

@attribute text string

@attribute articletype {games,programming}

• This is followed by the actual data:

@data

'perl from wikipedia free ...',programming

'console game from wikipedia free ...',games
'declarative programming from wikipedia ...',programming

…

Attribute types

• Attributes can be:

– Strings:

@attribute text string

– Nominal (fixed set of values):

@attribute articletype {games,programming}

– Numeric:

@attribute temperature numeric

Data section

• Each attribute is separated with a comma

• In our case we only have one attribute (the text) and

a category

• Text must be between '...'

• Weka is very strict with which ' character you use, so

make sure you use the correct one

• Each row in the file is called an instance (or

example)

Using Weka

• Double-clicking weka.jar should open the Weka
application

• You should now see the following window:

Open the Explorer

application

Using Weka

Click open file and select the

wikipedia_70.arff data file

(can be downloaded at the

course web page)

Using Weka

The dataset shall now be

loaded in Weka

Using Weka

Click the Choose button in

the Filter section

Using Weka

Open filters/unsupervised/attributes

Select StringToWordVector

Using Weka

ClickApply

Using Weka

The window shall

now look like this

Using Weka

Select the Classify

tab

Using Weka

Click this dropdown box and move to the top

Select “articletype”

Using Weka

Click the Choose button in the Classifier section

Select bayes/NaiveBayesMultinomial

Using Weka

Click the Start button

Using Weka

Weka has now trained the

classifier on the dataset and

evaluated how good it is

Interpreting the results

• Weka produced the following result:

• What does this tell us?

Interpreting the results

• The line ”Correctly Classified Instances” tells us the

accuracy:
- 68 of 70 articles were correctly classified

• The Confusion Matrix is often very interesting:

Interpreting the results

• We have two categories games and programming

• We can see that 33 articles in category a (games) were correctly
classified

• 2 articles about games were however incorrectly classified

• All articles about programming were correctly classified

A more realistic case:

Receipt or Invoice?

Background

• A user in Visma’s accounting system uploads a
picture of a receipt or invoice

• The user must then select if it is a receipt or invoice

in a dropdown menu

• It is quite easy to misclick or forgot this step

• Student project at Visma:

– Automatize this with machine learning

System Overview

OCR

Google Vision

FineReader

Naïve
Bayes

Bag-of-words

Image

Receipt?

Invoice?
Visma
SPCS

User

Result

• Dataset of 37 receipts and 38 invoices (75 images)

• 97.3% correctly classified images

• Enough for Visma to use it in production

• So far no continuation on the project

