
Lecture#3

Text Classification



Document Classification

• A very common machine learning problem is to classify a  

document based on its text contents

• We use the text contents as input to a machine learning  

algorithm, and outputs which category the document (most  

likely) belongs to

• The (probably) earliest and most common application is spam  

detection

• We want to classify if an email is spam or not based on the text  

contents of the email

• Spam filtering can also be used for entries and comments on  

blogs and social media



Spam Filtering

• The early systems for spam detection were based on rules

• Programmers manually designed a set of rules that could  
detect spam

• Rules could for example detect:

– Overuse of capital letters

– Words related to pharmaceutical products or Rolex watches

– Overuse of eye-catching colors

– …

• The biggest problem with this approach was that spammers  

learned about the rules and created spam that could  

circumvent them



Spam Filtering

• Another problem is that what is spam or not depends  
on the user

• Advertising of drugs could be normal for a  

pharmacist, but unwanted for a programmer

• Therefore, we need a spam filter that can learn!

• Modern spam filters also take into consideration the  

sender of an email, but that is out of scope for us

• We are only interested in the text contents



Learning to classify text

• There are several algorithms that can be used for text  

classification:
– Artificial Neural Networks

– Support Vector Machines

– K-nearest Neighbor algorithms

– Decision Trees

– Approaches based on natural language processing

– …

• We will focus on a simple, powerful and very common  

algorithm: Naïve Bayes



Bayes’ theorem

• First, we need to learn about Bayes’ theorem

• It describes the probability of an event, based on prior  

knowledge of conditions that might be related to the  

event

• Bayes’ theorem is stated using the following formula:

• … where P(A|B) shall be interpreted as 

”probability that A occurs given B”

• It is best explained using an example:



Example

• We are interested in

”is a stiff neck a good sign of being a good FIFA player?”

• To answer this using Bayes’ theorem we need to know  

the prior probabilities:

– 50% of the good FIFA players have a stiff neck:  

P(stiff | good) = 0.5

– One in 50000 players is good at FIFA:  

P(good) = 1/50000

– One in 20 players suffer from a stiff neck:  

P(stiff) = 1/20



Example

• We can now use the prior probabilities:

– P(stiff | good) = 0.5 P(good) = 1/50000 P(stiff) = 1/20

• … to calculate the probability of being a good FIFA player  

if you have a stiff neck:



Example

• Given the prior probabilities:

– P(stiff | good) = 0.5 P(good) = 1/50000 P(stiff) = 1/20

• … we can use Bayes’ theorem to say that it is a  

probability of 0.0002 that a player is good at FIFA if he  

has a stiff neck

• Or that one in 5000 players with stiff necks is good  

at FIFA



Naïve Bayes

• Bayes’ theorem only takes on attribute into consideration (stiff neck)  

when calculating the probability of belonging to a specific category  

(good FIFA player)

• In most real-world applications we have more than one attribute:

– stiff neck

– good gamepad

– large TV

– …

• We need a way of combining several inputs to get a probability of  

belonging to a specific category

• This is handled by the Naïve Bayes classifier



Naïve Bayes

• The classifier is called naïve because it assumes that the  

attributes are independent of each other

• It means that the probability of one attribute belonging to a  

specific category is completely unrelated to the probability of  

other attributes belonging to that category

• There are no relation between attributes

• This is actually a false assumption

• Example: ”money” is a better spam indicator if in combination  

with ”casino” than with ”programming”



Naïve Bayes

• The independence between attributes means that the actual  

probability calculated by the Naïve Bayes classifier is  

inaccurate

• You cannot say that the resulting probability is the actual

probability that a document belongs to a category

• We can however compare the results of the document belong  

to different categories, and see which has the highest  

probability

• This works surprisingly well for real-world document  

classification problems



Naïve Bayes classification

1. Calculate the frequencies of each attribute  
belonging to each category

2. For each category:

1. Multiply the conditional probability of each attribute into a  
product

2. Multiply the product with the category probability

3. Classify the document as belonging to the category  

with the highest probability

Let’s look at an example!



Example dataset

Game pad? Stiff neck? Player skill

Great Yes Good

Average Yes Good

Junk Yes Good

Average No Good

Junk No Bad

Average No Bad

Great Yes Bad

Average No Bad

Average No Bad



Frequency table

• First step is to generate a frequency table:

Game Pad? Stiff neck? Player skill?

Good Bad Good Bad Good Bad

Great 1 1 Yes 3 1 4 5

Average 2 3 No 1 4

Junk 1 1



Prior probabilities

• We continue filling the table with prior probabilities:

Game Pad? Stiff neck? Player skill?

Good Bad Good Bad Good Bad

Great 1 1 Yes 3 1 4 5

Average 2 3 No 1 4

Junk 1 1

P(Great | x) 1/4 1/5 P(Yes | x) 3/4 1/5 4/9 5/9

P(Avg | x) 2/4 3/5 P(No | x) 1/4 4/5

P(Junk | x) 1/4 1/5



Classification

• The table is all we need for classification

• Now we can answer questions like:

– ”A player has an average game pad and a stiff neck. Is he a good  

or bad player?”

– ”A player has a great game pad and not a stiff neck. Is he a good  

or bad player?”

• We have two possible categories, the player being Good or  

Bad

• Let’s calculate the probabilities of the above mentioned player  

belonging to the two categories:



Classification

• Classify the player:

– {game pad = average, stiff neck = yes}

• Probability that the player is Good:

P(Good) * P(average | Good) * P(yes | Good) = 4/9 * 2/4 * 3/4 = 0.1667

• Probability that the player is Bad:

P(Bad) * P(average | Bad) * P(yes | Bad) = 5/9 * 3/5 * 1/5 = 0.0667

• It is a higher probability for good than bad, so we classify  

the player as good!



Classification

• Classify the player:

– {game pad = great, stiff neck = no}

• Probability that the player is Good:

P(Good) * P(great | Good) * P(no | Good) = 4/9 * 1/4 * 1/4 = 0.0278

• Probability that the player is Bad:

P(Bad) * P(great | Bad) * P(no | Bad) = 5/9 * 1/5 * 4/5 = 0.0889

• It is a higher probability for bad than good, so we classify  

the player as bad!



Threshold

• In many applications it is better to return a ”don’t know” than a  
misclassified document

• In spam filtering, it is more important to avoid having legitimate email  

classified as spam than to catch every single spam message

• This can be solved by using a threshold

• If we use a threshold of 3 means that the probability for the highest

category must be at least 3 times higher than the probability of the

other category, otherwise the classifier is unsure

• In our examples we used a threshold of 1, meaning that we always  

classify as the highest category regardless of the difference in  

probabilities



The examples using threshold

{game pad = average, stiff neck = yes}

P(Good) P(Bad) Ratio Threshold Classified as

0.1667 0.0667 2.499 1 Good

0.1667 0.0667 2.499 3 Don’t know

{game pad = great, stiff neck = no}

P(Good) P(Bad) Ratio Threshold Classified as

0.0278 0.0889 3.198 1 Bad

0.0278 0.0889 3.198 3 Bad



Variants of Naïve Bayes

• The approach described here is called Multinomial Naïve  

Bayes

• There are a number of other variants of Naïve Bayes, mainly

Gaussian and Bernoulli

• In Bernoulli, we don’t count the actual frequency of an attribute  

in a category

• Instead we use 1 if the attribute appears in any document  

belonging to the category, and 0 otherwise

• In Gaussian, we assume that attributes are numeric and follow  

a normal distribution



Text classification

• In the examples we have seen so far we have had two  

attributes:

– Game pad: {great, average, junk}

– Stiff neck: {yes, no}

• In document classification, we have to classify texts of different  

length

• To do this we first have to convert the text contents of each  

document to a bag-of-words

• Then we have to count the frequency and calculate the  

probability that each word belongs to each category

• Let’s look at an example:



Example dataset

Text Spam?

Buy cheap Rolex? Yes

You want Viagra? Yes

Can you buy milk? No

I want candy tonight No

Want to go to the gym? No



Example dataset

Text Spam?

Buy cheap Rolex? Yes

You want cheap Viagra? Yes

Can you buy milk? No

Want candy tonight? No

Gym tonight? No

• The unique words are (special characters removed):
• buy, cheap, rolex, you, want, viagra, can, milk, candy, tonight, gym

• Next step is to create a frequency matrix



Example dataset

Spam?

Yes No Yes No Yes No

buy 1 1 can 0 1 2 3

cheap 2 0 milk 0 1

rolex 1 0 candy 0 1

you 1 1 tonight 0 1

want 1 1 gym 0 1

viagra 1 0



Example dataset

Spam?

Yes No Yes No Yes No

buy 1 1 can 0 1 2 3

cheap 2 0 milk 0 1

rolex 1 0 candy 0 1

you 1 1 tonight 0 1

want 1 1 gym 0 1

viagra 1 0 2/5 3/5

P(buy | x) 1/2 1/3 P(can | x) 0/2 1/3

P(cheap | x) 2/2 0/3 P(milk | x) 0/2 1/3

P(rolex | x) 1/2 0/3 P(candy | x) 0/2 1/3

P(you | x) 1/2 1/3 P(tonight | x) 0/2 1/3

P(want | x) 1/2 1/3 P(gym | x) 0/2 1/3

P(viagra | x) 1/2 0/3



Classification

• Now you want to classify the text 

”buy cheap candy”

• As in the previous examples, we calculate the probability for  
being spam or not being spam:

P(yes) * P(buy | yes) * P(cheap | yes) * P(candy | yes) = 2/5 * 1/2 * 2/2 * 0/2 = 0

• Here we can see a problem: if a word has never showed up in  

a category, we multiply with a 0 and the result will always be  

0…

• To solve this we can apply Laplace correction:



Laplace correction

• In Laplace correction we always add some constant value to  

each probability to avoid 0 probabilities

• If we use 1/3 as Laplace correction the probability for being  
spam looks like:

P(yes) * P(buy | yes) * P(cheap | yes) * P(candy | yes) =
= 2/5 * (1/2+1/3) * (2/2+1/3) * (0/2+1/3) =

= 0.4 * 0.833 * 1.333 * 0.333 = 2.9

• And for not being spam:

P(no) * P(buy | no) * P(cheap | no) * P(candy | no) =
= 3/5 * (1/3+1/3) * (0/3+1/3) * (1/3+1/3) =

= 0.6 * 0.667 * 0.333 * 0.667 = 0.089

• This message is classified as spam!



Spam or not?

• The text ”buy cheap candy” was clearly classified as spam

• Is this correct?

• The word that is most prominent in the result is ”cheap”, which  

exists in 2 of 2 spam and 0 of 3 legitimate messages

• If ”cheap” is not a good indicator for spam, we need more  

training data where cheap appears in legitimate message

• We need quite large amounts of data for text classification to  

be accurate



Weka



Weka

• Weka is a collection of machine learning algorithms

• It consists of a GUI tool and an API library

• It has been around for several years and has been  
used in numerous projects

• Weka can be downloaded at 

https://www.cs.waikato.ac.nz/ml/weka/

• We will now take a look at how we can use Weka to  
classify the Wikipedia dataset

http://www.cs.waikato.ac.nz/ml/weka/


Wikipedia dataset

• We will use a subset of the Wikipedia dataset  

consisting of 35 articles about programming, and 35  

about video games.

• All tags and code has been removed and the text  
has been converted to a bag-of-words

• The data is stored in an arff file

• Arff (attribute-relation file format) is the format Weka  
uses for data files



Arff file

• The first part in the arff files defines a name for the  

classification task, and each attribute with their respective  

type:

@relation Wikipedia  

@attribute text string

@attribute articletype {games,programming}

• This is followed by the actual data:

@data

'perl from wikipedia free ...',programming  

'console game from wikipedia free ...',games
'declarative programming from wikipedia ...',programming

…



Attribute types

• Attributes can be:

– Strings:

@attribute text string

– Nominal (fixed set of values):

@attribute articletype {games,programming}

– Numeric:

@attribute temperature numeric



Data section

• Each attribute is separated with a comma

• In our case we only have one attribute (the text) and  

a category

• Text must be between '...'

• Weka is very strict with which ' character you use, so  

make sure you use the correct one

• Each row in the file is called an instance (or

example)



Using Weka

• Double-clicking weka.jar should open the Weka  
application

• You should now see the following window:

Open the Explorer  

application



Using Weka

Click open file and select the  

wikipedia_70.arff data file  

(can be downloaded at the  

course web page)



Using Weka

The dataset shall now be  

loaded in Weka



Using Weka

Click the Choose button in  

the Filter section



Using Weka

Open filters/unsupervised/attributes

Select StringToWordVector



Using Weka

ClickApply



Using Weka

The window shall  

now look like this



Using Weka

Select the Classify  

tab



Using Weka

Click this dropdown box and move to the top  

Select “articletype”



Using Weka

Click the Choose button in the Classifier section  

Select bayes/NaiveBayesMultinomial



Using Weka

Click the Start button



Using Weka

Weka has now trained the  

classifier on the dataset and  

evaluated how good it is



Interpreting the results

• Weka produced the following result:

• What does this tell us?



Interpreting the results

• The line ”Correctly Classified Instances” tells us the  

accuracy:
- 68 of 70 articles were correctly classified

• The Confusion Matrix is often very interesting:



Interpreting the results

• We have two categories games and programming

• We can see that 33 articles in category a (games) were correctly  
classified

• 2 articles about games were however incorrectly classified

• All articles about programming were correctly classified



A more realistic case:  

Receipt or Invoice?



Background

• A user in Visma’s accounting system uploads a  
picture of a receipt or invoice

• The user must then select if it is a receipt or invoice  

in a dropdown menu

• It is quite easy to misclick or forgot this step

• Student project at Visma:

– Automatize this with machine learning



System Overview

OCR

Google Vision  

FineReader

Naïve  
Bayes

Bag-of-words

Image

Receipt?  

Invoice?
Visma  
SPCS

User



Result

• Dataset of 37 receipts and 38 invoices (75 images)

• 97.3% correctly classified images

• Enough for Visma to use it in production

• So far no continuation on the project


