Lecture#3

Text Classification

Document Classification

- A very common machine learning problem is to classify a document based on its text contents
- We use the text contents as input to a machine learning algorithm, and outputs which category the document (most likely) belongs to
- The (probably) earliest and most common application is spam detection
- We want to classify if an email is spam or not based on the text contents of the email
- Spam filtering can also be used for entries and comments on blogs and social media

Spam Filtering

- The early systems for spam detection were based on rules
- Programmers manually designed a set of rules that could detect spam
- Rules could for example detect:
 - Overuse of capital letters
 - Words related to pharmaceutical products or Rolex watches
 - Overuse of eye-catching colors

- ...

 The biggest problem with this approach was that spammers learned about the rules and created spam that could circumvent them

Spam Filtering

- Another problem is that what is spam or not depends on the user
- Advertising of drugs could be normal for a pharmacist, but unwanted for a programmer
- Therefore, we need a spam filter that can <u>learn</u>!
- Modern spam filters also take into consideration the sender of an email, but that is out of scope for us
- We are only interested in the text contents

Learning to classify text

- There are several algorithms that can be used for text classification:
 - Artificial Neural Networks
 - Support Vector Machines
 - K-nearest Neighbor algorithms
 - Decision Trees
 - Approaches based on natural language processing

- ...

• We will focus on a simple, powerful and very common algorithm: *Naïve Bayes*

Bayes' theorem

- First, we need to learn about Bayes' theorem
- It describes the probability of an event, based on prior knowledge of conditions that might be related to the event
- Bayes' theorem is stated using the following formula:

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

- ... where P(A|B) shall be interpreted as "probability that A occurs given B"
- It is best explained using an example:

Example

- We are interested in "is a stiff neck a good sign of being a good FIFA player?"
- To answer this using Bayes' theorem we need to know the prior probabilities:
 - 50% of the good FIFA players have a stiff neck:
 P(stiff | good) = 0.5
 - One in 50000 players is good at FIFA:
 P(good) = 1/50000
 - One in 20 players suffer from a stiff neck:
 P(stiff) = 1/20

Example

- We can now use the prior probabilities:
 - P(stiff | good) = 0.5 P(good) = 1/50000 P(stiff) = 1/20
- ... to calculate the probability of being a good FIFA player if you have a stiff neck:

$$P(good|stiff) = \frac{P(stiff|good) \cdot P(good)}{P(stiff)}$$
$$P(good|stiff) = \frac{0.5 \cdot 1/50000}{1/20} = 0.0002$$

Example

- Given the prior probabilities:
 - P(stiff | good) = 0.5 P(good) = 1/50000 P(stiff) = 1/20
- ... we can use Bayes' theorem to say that it is a probability of 0.0002 that a player is good at FIFA if he has a stiff neck
- Or that one in 5000 players with stiff necks is good at FIFA

Naïve Bayes

- Bayes' theorem only takes on attribute into consideration (stiff neck) when calculating the probability of belonging to a specific category (good FIFA player)
- In most real-world applications we have more than one attribute:
 - stiff neck
 - good gamepad
 - large TV
 - ...
- We need a way of combining several inputs to get a probability of belonging to a specific category
- This is handled by the Naïve Bayes classifier

Naïve Bayes

- The classifier is called *naïve* because it assumes that the attributes are *independent* of each other
- It means that the probability of one attribute belonging to a specific category is completely unrelated to the probability of other attributes belonging to that category
- There are no relation between attributes
- This is actually a false assumption
- Example: "money" is a better spam indicator if in combination with "casino" than with "programming"

Naïve Bayes

- The independence between attributes means that the actual probability calculated by the Naïve Bayes classifier is inaccurate
- You cannot say that the resulting probability is the *actual* probability that a document belongs to a category
- We can however *compare* the results of the document belong to different categories, and see which has the highest probability
- This works surprisingly well for real-world document classification problems

Naïve Bayes classification

- 1. Calculate the frequencies of each attribute belonging to each category
- 2. For each category:
 - 1. Multiply the conditional probability of each attribute into a product
 - 2. Multiply the product with the category probability
- 3. Classify the document as belonging to the category with the highest probability

Let's look at an example!

Game pad?	Stiff neck?	Player skill
Great	Yes	Good
Average	Yes	Good
Junk	Yes	Good
Average	No	Good
Junk	No	Bad
Average	No	Bad
Great	Yes	Bad
Average	No	Bad
Average	No	Bad

Frequency table

• First step is to generate a frequency table:

Game Pad?		Stiff neck?			Player skill?		
	Good	Bad		Good	Bad	Good	Bad
Great	1	1	Yes	3	1	4	5
Average	2	3	No	1	4		
Junk	1	1					

Game pad?	Stiff neck?	Player skill
Great	Yes	Good
Average	Yes	Good
Junk	Yes	Good
Average	No	Good
Junk	No	Bad
Average	No	Bad
Great	Yes	Bad
Average	No	Bad
Average	No	Bad

Prior probabilities

• We continue filling the table with prior probabilities:

Game Pad?		Stiff neck?			Player skill?		
	Good	Bad		Good	Bad	Good	Bad
Great	1	1	Yes	3	1	4	5
Average	2	3	No	1	4		
Junk	1	1					
P(Great x)	1/4	1/5	P(Yes x)	3/4	1/5	4/9	5/9
P(Avg x)	2/4	3/5	P(No x)	1/4	4/5		
P(Junk x)	1/4	1/5					

- The table is all we need for classification
- Now we can answer questions like:
 - "A player has an average game pad and a stiff neck. Is he a good or bad player?"
 - "A player has a great game pad and not a stiff neck. Is he a good or bad player?"
- We have two possible categories, the player being Good or Bad
- Let's calculate the probabilities of the above mentioned player belonging to the two categories:

- Classify the player:
 - {game pad = average, stiff neck = yes}
- Probability that the player is Good:

P(Good) * P(average | Good) * P(yes | Good) = 4/9 * 2/4 * 3/4 = 0.1667

• Probability that the player is Bad:

P(Bad) * P(average | Bad) * P(yes | Bad) = 5/9 * 3/5 * 1/5 = 0.0667

 It is a higher probability for good than bad, so we classify the player as good!

- Classify the player:
 - {game pad = great, stiff neck = no}
- Probability that the player is Good:

P(Good) * P(great | Good) * P(no | Good) = 4/9 * 1/4 * 1/4 = **0.0278**

• Probability that the player is Bad:

P(Bad) * P(great | Bad) * P(no | Bad) = 5/9 * 1/5 * 4/5 = 0.0889

 It is a higher probability for bad than good, so we classify the player as <u>bad</u>!

Threshold

- In many applications it is better to return a "don't know" than a misclassified document
- In spam filtering, it is more important to avoid having legitimate email classified as spam than to catch every single spam message
- This can be solved by using a *threshold*
- If we use a threshold of 3 means that the probability for the highest category must be at least 3 times higher than the probability of the other category, otherwise the classifier is unsure
- In our examples we used a threshold of 1, meaning that we always classify as the highest category regardless of the difference in probabilities

The examples using threshold

{game pad = average, stiff neck = yes}							
P(Good) P(Bad) Ratio Threshold Classified a							
0.1667	0.0667	2.499	1	Good			
0.1667 0.0667 2.499 3 Don't kno							

{game pad = great, stiff neck = no}							
P(Good) P(Bad) Ratio Threshold Classified a							
0.0278	0.0889	3.198	1	Bad			
0.0278 0.0889 3.198 3 Bad							

Variants of Naïve Bayes

- The approach described here is called *Multinomial Naïve Bayes*
- There are a number of other variants of Naïve Bayes, mainly Gaussian and Bernoulli
- In *Bernoulli*, we don't count the actual frequency of an attribute in a category
- Instead we use 1 if the attribute appears in any document belonging to the category, and 0 otherwise
- In *Gaussian*, we assume that attributes are numeric and follow a normal distribution

Text classification

- In the examples we have seen so far we have had two attributes:
 - Game pad: {great, average, junk}
 - Stiff neck: {yes, no}
- In document classification, we have to classify texts of different length
- To do this we first have to convert the text contents of each document to a *bag-of-words*
- Then we have to count the frequency and calculate the probability that each word belongs to each category
- Let's look at an example:

Text	Spam?
Buy cheap Rolex?	Yes
You want Viagra?	Yes
Can you buy milk?	No
I want candy tonight	No
Want to go to the gym?	No

Text	Spam?
Buy cheap Rolex?	Yes
You want cheap Viagra?	Yes
Can you buy milk?	No
Want candy tonight?	No
Gym tonight?	No

- The unique words are (special characters removed):
 - buy, cheap, rolex, you, want, viagra, can, milk, candy, tonight, gym
- Next step is to create a frequency matrix

							Spam?	
	Yes	No		Yes	No	Yes	No	
buy	1	1	can	0	1	2	3	
cheap	2	0	milk	0	1			
rolex	1	0	candy	0	1			
you	1	1	tonight	0	1			
want	1	1	gym	0	1			
viagra	1	0						

						Spam?	
	Yes	No		Yes	No	Yes	No
buy	1	1	can	0	1	2	3
cheap	2	0	milk	0	1		
rolex	1	0	candy	0	1		
you	1	1	tonight	0	1		
want	1	1	gym	0	1		
viagra	1	0				2/5	3/5
P(buy x)	1/2	1/3	P(can x)	0/2	1/3		
P(cheap x)	2/2	0/3	P(milk x)	0/2	1/3		
P(rolex x)	1/2	0/3	P(candy x)	0/2	1/3		
P(you x)	1/2	1/3	P(tonight x)	0/2	1/3		
P(want x)	1/2	1/3	P(gym x)	0/2	1/3		
P(viagra x)	1/2	0/3					

- Now you want to classify the text "buy cheap candy"
- As in the previous examples, we calculate the probability for being spam or not being spam:

P(yes) * P(buy | yes) * P(cheap | yes) * P(candy | yes) = 2/5 * 1/2 * 2/2 * 0/2 = 0

- Here we can see a problem: if a word has never showed up in a category, we multiply with a 0 and the result will always be 0...
- To solve this we can apply Laplace correction:

Laplace correction

- In Laplace correction we always add some constant value to each probability to avoid 0 probabilities
- If we use 1/3 as Laplace correction the probability for being spam looks like:

P(yes) * P(buy | yes) * P(cheap | yes) * P(candy | yes) = = 2/5 * (1/2+1/3) * (2/2+1/3) * (0/2+1/3) = = 0.4 * 0.833 * 1.333 * 0.333 = **2.9**

• And for not being spam:

P(no) * P(buy | no) * P(cheap | no) * P(candy | no) = = 3/5 * (1/3+1/3) * (0/3+1/3) * (1/3+1/3) = = 0.6 * 0.667 * 0.333 * 0.667 = **0.089**

• This message is classified as spam!

Spam or not?

- The text "buy cheap candy" was clearly classified as spam
- Is this correct?
- The word that is most prominent in the result is "cheap", which exists in 2 of 2 spam and 0 of 3 legitimate messages
- If "cheap" is not a good indicator for spam, we need more training data where cheap appears in legitimate message
- We need quite large amounts of data for text classification to be accurate

Weka

Weka

- Weka is a collection of machine learning algorithms
- It consists of a GUI tool and an API library
- It has been around for several years and has been used in numerous projects
- Weka can be downloaded at https://www.cs.waikato.ac.nz/ml/weka/
- We will now take a look at how we can use Weka to classify the Wikipedia dataset

Wikipedia dataset

- We will use a subset of the Wikipedia dataset consisting of 35 articles about programming, and 35 about video games.
- All tags and code has been removed and the text has been converted to a *bag-of-words*
- The data is stored in an *arff* file
- Arff (attribute-relation file format) is the format Weka uses for data files

Arff file

• The first part in the arff files defines a name for the classification task, and each attribute with their respective type:

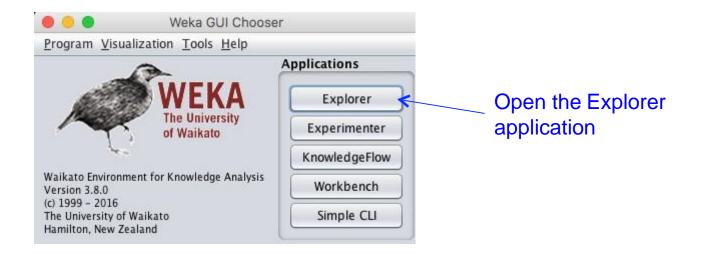
@relation Wikipedia

@attribute text string
@attribute articletype {games,programming}

• This is followed by the actual data:

@data
'perl from wikipedia free ...',programming
'console game from wikipedia free ...',games
'declarative programming from wikipedia ...',programming
...

Attribute types


- Attributes can be:
 - Strings:@attribute text string
 - Nominal (fixed set of values):
 @attribute articletype {games,programming}
 - Numeric:

@attribute temperature numeric

Data section

- Each attribute is separated with a comma
- In our case we only have one attribute (the text) and a category
- Text must be between '...'
- Weka is very strict with which ' character you use, so make sure you use the correct one
- Each row in the file is called an *instance* (or *example*)

- Double-clicking weka.jar should open the Weka application
- You should now see the following window:

Preprocess Classify Cluster Ass		Explorer							
Open file Open URL Filter		rate Undo	Edit	Save					
Choose None Current relation									
Click open file and select the wikipedia_70.arff data file (can be downloaded at the course web page)	Attributes: None Sum of weights: None	Name: None Missing: None	Distinct: None	Type: None Unique: None					
Remove									
Status Welcome to the Weka Explorer				Log 💉 X O					

🔴 😑 🔍 Weka I	Explorer
Preprocess Classify Cluster Associate Select attributes	/isualize
Open file Open URL Open DB Gene	erate Undo Edit Save
Choose None	Apply
Current relation	Selected attribute
Relation: WikipediaAttributes: 2Instances: 70Sum of weights: 70	Name: textType: StringMissing: 0 (0%)Distinct: 70Unique: 70 (100%)
Attributes	
All None Invert Pattern	
No. Name	
2 articletype	Class: articletype (Nom)
The dataset shall now be loaded in Weka	Attribute is neither numeric nor nominal.
Remove	
Kemove	
Status	
ок	Log 🗸 🔊 🗴 O

	🔴 🕘 🕘 We	ka Explorer									
	Preprocess Classify Cluster Associate Select attributes	Visualize									
	Open file Open URL Open DB Generate Undo Edit Save										
	Filter										
	Choose None	Apply									
	Current relation	Selected attribute									
	Relation: WikipediaAttributes: 2Instances: 70Sum of weights: 70	Name: textType: StringMissing: 0 (0%)Distinct: 70Unique: 70 (100%)									
Click the	e Choose button in	_									
the Filte	r section None Invert Pattern										
	1 text										
	2 articletype	Class: articletype (Nom) Visualize All									
		Attribute is neither numeric nor nominal.									
	Remove										
	Status										
	ОК	Log 🗸 🐨 . x 0									

• • •		Weka E	Explorer			
Preproces	ss Classify Cluster Associate S	select attributes V	/isualize			
Open fi	le Open URL Open	DB Gene	rate Undo	Edit	Sa	ave
					12	
	📄 RandomSubset	A				Apply
-	📑 Remove		Selected attribute			
2	📄 RemoveByName		Selected attribute			
	🕒 RemoveType	ibutes: 2	Name: text	200	Type: String	
	RemoveUseless	eights: 70	Missing: 0 (0%)	Distinct: 70	Unique: 70 (1	00%)
A	RenameAttribute					
	RenameNominalValues					
	Reorder	Pattern				
	ReplaceMissingValues ReplaceMissingWithUserConst					
	ReplaceWithMissingValue	.al				
	SortLabels		(- <u> </u>			
	Standardize		Class: articletype (No	om)	▼ Vis	sualize All
	StringToNominal					
	StringToWordVector					
	SwapValues					
	TimeSeriesDelta		Attri	bute is neither numeric	nor nominal.	
	📄 TimeSeriesTranslate		en filters/unsi			
	Transpose	Sele	ect StringToV	VordVector	,	
	instance	T				
	1.1					
S	<u>F</u> ilter <u>R</u> emove filter <u>C</u> los	ie			\neg	
-OK					Log	×0

🔴 🕘 🗧 Weka	Explorer
Preprocess Classify Cluster Associate Select attributes	Visualize
Open file Open URL Open DB Gen	erate Undo Edit Save
Filter	
Choose StringToWordVector -R first-last -W 1000 -prune-	rate – 1.0 – N 0 – stemmer weka.core.stemmers.NullStemn Apply
Current relation	Selected attribute
Relation: WikipediaAttributes: 2Instances: 70Sum of weights: 70	Name: text Type: String Missing: 0 (0%) Distinct: 70 Unique: 70 (100%)
Attributes	
All None Invert Pattern No. Name 1 text 2 articletype	Click Apply Class: articletype (Nom) Visualize All Attribute is neither numeric nor nominal.
Remove	
Status	
ОК	Log 🗸 x 0

	Weka	Explorer		
Preprocess Classify	Cluster Associate Select attributes	/isualize		
Open file Op	oen URL Open DB Gene	erate Undo	Edit	Save
Choose StringToWo	ordVector -R first-last -W 1000 -prune-r	rate –1.0 –N 0 –stemmer we	eka.core.stemmers.Nul	IStemn Apply
Current relation		Selected attribute		
Relation: Wikipedia-v Instances: 70	veka.filters Attributes: 1519 Sum of weights: 70	Name: articletype Missing: 0 (0%)		e: Nominal ie: 0 (0%)
Attributes		No. Label	Count	Weight
	ne Invert Pattern	1 games 2 programmin		35.0 35.0
No. Name				
1 📃 articletype	2			
2 🗌 & 3		Class: 日本語 (Num)		Visualize All
4 -				
5 🗌 / 6 🗌 1970s		35	35	
7 1980s				
8 🗌 1990s				
9 1upcom				
	Remove			
Status				
ndow shall			Lo	g 💉 x 0
ok like this				

	🕒 😑 🕒 Weka	a Explorer
	Preprocess Classify Cluster Associate Select attributes	Visualize
	Open file Open URL Open DB Ger Filter	nerate Undo Edit Save
Sele	ct the Classify or Vector -R first-last -W 1000 -prune-	-rate -1.0 -N 0 -stemmer weka.core.stemmers.NullStemn Apply
tab	Current relation	Selected attribute
	Relation: Wikipedia-weka.filters Attributes: 1519 Instances: 70 Sum of weights: 70	Name: articletypeType: NominalMissing: 0 (0%)Distinct: 2Unique: 0 (0%)
	Attributes	No. Label Count Weight
		1 games 35 35.0 2 programming 35 35.0
	All None Invert Pattern No. Name No. Name 1 articletype 2 &	
	3 🗍 +	Class: 日本語 (Num) Visualize All
	4 - 5 / 6 1970s 7 1980s 8 1990s 9 1upcom	35 35
	Remove	
	Status	
	OK	Log 💉 x 0

			Wek	a Explorer	
Preprocess Cla	assify Cluster	Associate	Select attributes	Visualize	
Classifier			·		
Choose Zer	oR				
Test options		Clas	sifier output		
 Use training Supplied tes Cross-valida Percentage s More d (Num) 日本語 Start Result list (right- 	ation Folds 10 split % 66 options				
k this dropc ect "articlety		and mo	ove to the t	ор	
Status					
ОК					Log 💉 x 0

	Weka Explorer											
	Preprocess	Classify	Cluster	Associate	Select attributes	Visualize						
	Classifier							_				
	Choose	Choose ZeroR										
	Test options	Test options Classifier output										
	O Use train	ning set										
Click	the Choo	se bu	tton ir	the Cl	assifier sec	tion		1				
	t bayes/N											
	O Percenta	ige split	% 6	5				1				
	Mo	ore option:	s									
	(Nom) articlet	ype		•								
	Start		Stop									
	Result list (rig	ght-click	for optio	ns)								
	Status											
	ОК						Log 💉 x	0				

	Weka Explorer
Preprocess Classify Cluster As	ociate Select attributes Visualize
Classifier	
Choose NaiveBayesMultinomi	
Test options	Classifier output
🔘 Use training set	
○ Supplied test set Set	
Cross-validation Folds 10	
O Percentage split % 66	
More options	
(Nom) articletype	
(Nom) andersype	
Start Stop	
Result list (right-click for options)	
the Start button	
Status	

	Weka Explorer
Preprocess Classify Cluster As	sociate Select attributes Visualize
Classifier	
Choose NaiveBayesMultinomi	al
Test options	Classifier output
 Use training set Supplied test set Set 	=== Stratified cross-validation === === Summary === Correctly Classified Instances 68 97.1429 %
Cross-validation Folds 10 Percentage split % 66	Incorrectly Classified Instances 2 2.8571 % Kappa statistic 0.9429 Mean absolute error 0.0286
More options	Root mean squared error 0.0280 Root mean squared error 0.169 Root relative spuared error 5.7018 % Total Number of Instances 70
(Nom) articletype	Weka has now trained the
Start Stop Result list (right-click for options)	TP Rate FP Rate Precis 0,943 0,000 1,000 1,000 0,057 0,946 Weighted Avg. 0,971 0,029 0,973 0,971 0,971 0,944
14:53:20 - bayes.NaiveBayesMult	=== Confusion Matrix === a b < classified as 33 2 a = games 0 35 b = programming
Status	
ОК	Log x 0

Interpreting the results

- Weka produced the following result:
 - === Stratified cross-validation === === Summary ===

Correctly Classi Incorrectly Clas Kappa statistic Mean absolute er Root mean square Relative absolut Root relative sq Total Number of	68 2 0.9429 0.0286 0.169 5.7018 % 33.7281 % 70		97.1429 2.8571			
=== Detailed Accuracy By Class ===						
Weighted Avg.	TP Rate 0,943 1,000 0,971			Recall 0,943 1,000 0,971	F-Measure 0,971 0,972 0,971	MCC 0,944 0,944 0,944
=== Confusion Matrix ===						
a b < classified as 33 2 a = games 0 35 b = programming						

• What does this tell us?

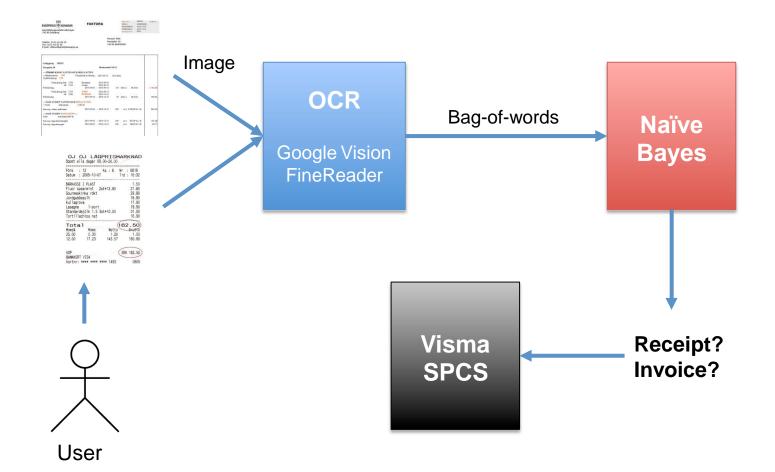
Interpreting the results

- The line "Correctly Classified Instances" tells us the accuracy:
 - 68 of 70 articles were correctly classified
- The Confusion Matrix is often very interesting:

Interpreting the results

- We have two categories *games* and *programming*
- We can see that 33 articles in category *a* (games) were correctly classified
- 2 articles about games were however incorrectly classified
- All articles about programming were correctly classified

=== Confusion Matrix === a b <-- classified as 33 2 | a = games 0 35 | b = programming


A more realistic case: Receipt or Invoice?

Background

- A user in Visma's accounting system uploads a picture of a receipt or invoice
- The user must then select if it is a receipt or invoice in a dropdown menu
- It is quite easy to misclick or forgot this step
- Student project at Visma:
 - Automatize this with machine learning

System Overview

Result

- Dataset of 37 receipts and 38 invoices (75 images)
- 97.3% correctly classified images
- Enough for Visma to use it in production
- So far no continuation on the project