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The assumption was that spatially local  

information is very important inimages

Objects are  

“groups” of  

pixels that are  

nearby
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ConvNet’s propose the concept of a filter(also  

known as a kernel) - which acts like a feature  

detector

It does the same job as a neuron in thenetworks  

we’ve seen so far - each filter considers some  

aspect of the input and its outputs are a  

measure of how much the filter supports the  

particular aspect/feature
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Filters are defined by some width and height,and  

are usually square

We slide a filter over the entire image, and  

therefore produce a corresponding second image  

from the activations of the filter
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15

Let’s look at a concrete example  

Consider an image of size 15x22 pixels

22
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Consider a small 3x3 filter that has learnedto  

detect buildings

“Activation map”  

Generated Image
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Since there is no building underneath the filter, it  

willoutput a low value in this case

“Activation map”  

Generated Image
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In this case, the filter finally sees some portionof  

some building, so its output will be slightlyhigher

“Activation map”  

Generated Image
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We repeat the process until we reach theend of  

the row

“Activation map”  

Generated Image
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We shift one pixel down and repeat theentire  

process, filling in the second row of the  

“activation map”

“Activation map”  

Generated Image
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We continue until the end of the row

“Activation map”  

Generated Image
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And repeat the entire process for thewhole  

image

“Activation map”  

Generated Image
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The higher layers can now use this activation map  

to create richer features based on “buildings  

information”

“Activation map”  

Generated Image
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Usually, we have a lot of filters, so each of them  

can learn different features from the input image

Although not common in images, for text, we can  

also have filters of different sizes!
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Some terminologies:

• Stride: The number of pixels toshift at each step

• Depth: The depth of a Conv layer is the number of filters  

in it - If we have N filters, we will have N activation maps

• Padding: Since we are sliding the filters within the  

image boundaries, the activation map willbe smaller
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3x3 f i l t e r

2x4  

ac t iva t ion map
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Some terminologies:

• Stride: The number of pixels toshift at each step

• Depth: The depth of a Conv layer is the number of filters  

in it - If we have N filters, we will have N activation maps

• Padding: Each image is padded with “zero” pixelsto  

maintain the image size in themap

4x6  

ac t iva t ion map4x6 image
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• Example of an actual computation

http://deeplearning.stanford.edu/wiki / index.php/Feature_extract ion_using_convolution

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution


Convolutional Neural Networks

Convolutional layers in text are quitesimilar to  

the ones in images, but we work only in one  

dimension!

2 Dimensions

John is driving acar

1 Dimension
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Convolutional Neural Networks

Filters are usually as tall as the embedding layer,  

and sliding is in one dimensiononly

D u i s b u r g

The output in this case will be a6-vector



Kim, Jernite, Sontag, Rush, Character-Aware Neural Language Model, AAAI2016

Character CNN
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• ConvNets are quite popular in textat  

character level

• Used to build word embeddings fora larger  

network
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