Neural Network Language Model

Lecture \# 4

Neural Network Language Model

Language Model

You shall know a word by the company it keeps
—Firth, J. R. 1957:11

Language Model

Fill in the blank:

Language Model

Fill in the blank:
car and cat both work

Language Model

Fill in the blank:
... a
car and cat both work

John is driving a

Language Model

Fill in the blank:
... a
car and cat both work

John is driving a

only car works here

Language Model

Fill in the blank:
... a
car and cat both work

John is driving a

Similarly, machines use the context to predict the next words

Language Model

You chose "driving a car" because you've seen that phrase more frequently
"driving a cat" is not a common phrase

Language Model

Fill in the blank:

This
 is going at $100 \mathrm{~km} /$ hours

 bicycleCar at $100 \mathrm{~km} /$ hours is more probable than a bicycle

Language Model

Language model defines
 "how probable a sentence is"

Language Model

Let's look at the example again

How probable is:
John is driving a car vs. John is driving a cat

In other words, what is the probability to predict cat or car given the context "John is driving a"

Language Model

Q: Can we see language modeling as a classification problem?

Language Model

Q: Can we see language modeling as a classification problem?
A: Yes! We are just predicting which word ("class") is coming next.

Language Model

Q: Can we see language modeling as a classification problem?
A: Yes! We are just predicting which word ("class") is coming next.

$$
p(<\mathrm{s}>\text { Dan likes ham </s>) }=
$$

Language Model

Q: Can we see language modeling as a classification problem?

A: Yes! We are just predicting which word ("class") is coming next.

$$
p(\langle\mathrm{~s}\rangle \text { Dan likes ham }</ \mathrm{s}\rangle)=p(\operatorname{Dan}|<\mathrm{s}\rangle)
$$

Predict Dan given <s>

Language Model

Q: Can we see language modeling as a classification problem?

A: Yes! We are just predicting which word ("class") is coming next.

$$
p(<\mathrm{s}>\text { Dan likes ham </s>)}=p(\operatorname{Dan}|<\mathrm{s}\rangle)
$$

Predict Dan given <s >
What is the probability of Dan given <s>?

Language Model

Q: Can we see language modeling as a classification problem?

A: Yes! We are just predicting which word ("class") is coming next.

$$
\begin{aligned}
& p(\langle\mathrm{~s}\rangle \text { Dan likes ham }\langle/ \mathrm{s}\rangle)=p(\operatorname{Dan} \mid\langle\mathrm{s}\rangle) \\
& \cdot p(\text { likes } \mid \operatorname{Dan})
\end{aligned}
$$

Predict likes given Dan

Language Model

Q: Can we see language modeling as a classification problem?

A: Yes! We are just predicting which word ("class") is coming next.

$$
\begin{aligned}
p(\langle\mathrm{~s}\rangle \text { Dan likes ham </s>)} & =p(\operatorname{Dan} \mid\langle\mathrm{s}\rangle) \\
& \cdot p(\text { likes } \mid \text { Dan }) \\
& \cdot p(\text { ham } \mid \text { likes })
\end{aligned}
$$

Predict ham given likes

Language Model

Q: Can we see language modeling as a classification problem?

A: Yes! We are just predicting which word ("class") is coming next.

$$
\begin{aligned}
p(<\mathrm{s}\rangle \text { Dan likes ham </s>)} & =p(\operatorname{Dan} \mid\langle\mathrm{s}\rangle) \\
& \cdot p(\text { likes } \mid \text { Dan }) \\
& \cdot p(\text { ham } \mid \text { likes }) \\
& \cdot p(</ \mathrm{s}\rangle \mid \text { ham })
\end{aligned}
$$

Language Model

Words represent classes that we want to predict!

Input to the classifier: previous words i.e. context Output: probability distribution over all possible words, i.e. our vocabulary

Neural Network Language Model

Input Layer 1 Layer $2 \quad$ Output

Neural Network Language Model

Neural Network Language Model

Input Representation

Input Previously we've used a vector as input, where each element of the vector represented some "feature" of the input

Input Representation

Input
Previously we've used a vector as input, where each element of the vector represented some "feature" of the input

Car

Input Representation

Input

Can we represent a word as a feature vector?

One Hot Vector Representation

- Every word can be represented as a one hot vector

One Hot Vector Representation

- Every word can be represented as a one hot vector
- Suppose the total number of unique words in the corpus is 10,000

One Hot Vector Representation

- Every word can be represented as a one hot vector
- Suppose the total number of unique words in the corpus is 10,000
- Assign each word a unique index:

```
Universität: 1
cat: 2
house: 3
car: 4
apple: 10,000
```


One Hot Vector Representation

- Every word can be represented as a one hot vector
- Suppose the total number of unique words in the corpus is 10,000
- Assign each word a unique index:

Universität: 1 cat: 2 house: 3 car: 4 \vdots apple: 10,000
Dictionary

One Hot Vector Representation

- Every word can be represented as a one hot vector
- Suppose the total number of unique words in the corpus is 10,000
- Assign each word a unique index:

Only index that represents the input word will be one

One Hot Vector Representation

- Every word can be represented as a one hot vector
- Suppose the total number of unique words in the corpus is 10,000
- Assign each word a unique index:

Only index that represents the input word will be one

One Hot Vector Representation

- Every word can be represented as a one hot vector
- Suppose the total number of unique words in the corpus is 10,000
- Assign each word a unique index:

Vector size will be the size of the vocabulary,
i.e. 10,000 in this case

One Hot Vector Representation

One Hot Vector Representation

One Hot Vector Representation

$$
[\mathrm{V} \times \mathrm{h}]
$$

One-hot vector will "turn on" one row of weights

Higher ngram Vector Representation

- What about representing multiple words?

Bag of words approach

Higher ngram Vector Representation

- What about representing multiple words?

Bag of words approach

Bigram: indices of the two previous words are 1 in the vector
a car $=\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ \vdots \\ 1\end{array}\right] \quad$ a cat $=\left[\begin{array}{c}0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1\end{array}\right]$

Higher ngram Vector Representation

- What about representing multiple words?

Bag of words approach

Bigram: indices of the two previous words are 1 in the vector
a car $=\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ \vdots \\ 1\end{array}\right] \quad$ a cat $=\left[\begin{array}{c}0 \\ 1 \\ \hline 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1\end{array}\right]$

Higher ngram Vector Representation

- What about representing multiple words?

Bag of words approach

Trigram: indices of the three previous words are 1 in the vector
a fast car $=\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ \vdots \\ \vdots \\ 1\end{array}\right]$ a fast cat $=\left[\begin{array}{c}0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ \vdots \\ \vdots \\ 1\end{array}\right]$

Higher ngram Vector Representation

- What about representing multiple words?

Context-aware approach

In the bag of words approach, order information is lost!

Higher ngram Vector Representation

- What about representing multiple words?

Context-aware approach

In the bag of words approach, order information is lost!
Solution: for N words, concatenate one-hot vectors for each of the words in the correct order

Higher ngram Vector Representation

Context-aware approach

Higher ngram Vector Representation

Context-aware approach

Higher ngram Vector Representation

Context-aware approach

input vector length has increased

Higher ngram Vector Representation

Context-aware approach

input vector length has increased

- order information is available for the training Advantages
- long vectors in case of large context size
- number of parameters increases with context size Disadvantages

Higher ngram Vector Representation

- Bag of words vs. context-aware approach?
- Given the disadvantages of the context-aware approach, Bag of words is more commonly used
- Works well in practice

Input Representation

Generally, the size of the vocabulary is very
large

- Results in very large one-hot vectors!

Input Representation

Generally, the size of the vocabulary is very
large

- Results in very large one-hot vectors!

Some tricks to reduce vocabulary size:

1) Take most frequent top words. For example, consider only 10,000 most frequent words and map the rest to a unique token <UNK>
2) Cluster words
a) based on context
b) based on linguistic properties

Neural Network Language Model

Let us look at a complete example:
Vocabulary: \{"how", "you", "hello", "are"\}
Network Architecture: 2 hidden layers of size 3 each

Neural Network Language Model

Let us look at a complete example:
Vocabulary: \{"how", "you", "hello", "are"\}
Network Architecture: 2 hidden layers of size 3 each

Neural Network Language Model

Vocabulary: \{"how", "you", "hello", "are"\}

$$
\begin{aligned}
& \text { [} 0.000 \text {] } \\
& W_{1} \\
& W_{2} \\
& W_{3}
\end{aligned}
$$

Neural Network Language Model

Vocabulary: \{"how", "you", "hello", "are"\}
$[\bigcirc \bigcirc \bigcirc \bigcirc]$ "hello"

Neural Network Language Model

Vocabulary: \{"how", "you", "hello", "are"\}

$$
\begin{gathered}
{\left[\begin{array}{llll}
{\left[\begin{array}{llll}
\circ & 0 & 0
\end{array}\right]} \\
\text { "hello" }
\end{array}\right.}
\end{gathered}\left[\begin{array}{lll}
{\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]}
\end{array}\right.
$$

Neural Network Language Model

Vocabulary: \{"how", "you", "hello", "are"\}

$$
\begin{aligned}
& {[\bigcirc \bigcirc \bigcirc \bigcirc]} \\
& \text { "hello"" }
\end{aligned}
$$

Neural Network Language Model

Vocabulary: \{"how", "you", "hello", "are"\}

$$
\begin{aligned}
& {[\bigcirc \bigcirc \bigcirc \bigcirc]} \\
& \text { "hello"" }
\end{aligned}
$$

W_{1}

W_{2}

W_{3}

$$
\left[\begin{array}{llll}
{[\bigcirc \bigcirc \bigcirc} & \circ & \begin{array}{l}
\text { output scores } \\
\text { max: "how"" }
\end{array}
\end{array}\right.
$$

Neural Network Language Model

Vocabulary: \{"how", "you", "hello", "are"\}

$$
\left.\begin{array}{cc}
{\left[\begin{array}{llll}
\circ & \circ & \circ & 0
\end{array}\right]} \\
\text { "how" }
\end{array}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\right]
$$

Neural Network Language Model

Vocabulary: \{"how", "you", "hello", "are"\}

$$
\left.\begin{array}{cc}
{\left[\begin{array}{llll}
\circ & \bigcirc & \bigcirc & 0
\end{array}\right]} \\
\text { "are" } & {\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]}
\end{array}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\right]
$$

Neural Network Language Model

$$
\begin{array}{r}
{\left[\begin{array}{llll}
{\left[\begin{array}{llll}
\circ & 0 & 0
\end{array}\right]} \\
\text { "are" }
\end{array}\right.} \\
{\left[\begin{array}{lll}
W_{1}
\end{array}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right.}
\end{array}
$$

Each one-hot vector turns on one row in the weight matrix and results in [1 x 3] vector

Neural Network Language Model

$\left[\begin{array}{llll}\circ & 0 & 0 & 0\end{array}\right]$ "are" $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
 W_{1}

Each one-hot vector turns on one row in the weight matrix and results in $[1 \times 3]$ vector Can we say that the $\left[\begin{array}{ll}1 & \times 3\end{array}\right]$ vector represents the input word?

Neural Network Language Model

$\left[\begin{array}{llll}\circ & 0 & 0 & 0\end{array}\right]$ "are" $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
 W_{1}

Each one-hot vector turns on one row in the weight matrix and results in $[1 \times 3]$ vector Can we say that the $\left[\begin{array}{ll}1 & \times 3\end{array}\right]$ vector represents the input word? Yes

Exercise

Create a 2D vector space representation of the following words:
dog, lion, cat, rabbit, horse, zebra, cheetah, parrot, sparrow, elephant, chicken, monkey

Exercise

Exercise

Exercise

Exercise

Word Embeddings

How did you decide which animals need to be closer?
How did you handle conflicts between animals that belong to multiple groups?
How does having this kind of vector space representation help us?

Word Embeddings

- In one-hot vector representation, a word is represented as one large sparse vector

only one element is 1 in the entire vector

vectors of different words do not give us any information about the potential relations
between the words!

Word Embeddings

- In one-hot vector representation, a word is represented as one large sparse vector
- Instead, word embeddings are dense vectors in some vector space

Word Embeddings

- In one-hot vector representation, a word is represented as one large sparse vector
- Instead, word embeddings are dense vectors in some vector space
word vectors are continuous representations of words
vectors of different words give us information about the potential relations between the words - words closer together in meaning have vectors closer to each other

Word Embeddings

Word Embeddings

"Representation of words in continuous space"

Inherit benefits

- Reduce dimensionality
- Semantic relatedness
- Increase expressiveness
- one word is represented in the form of several features (numbers)

Word Embeddings

Play with some embeddings!
https://rare-technologies.com/word2vec-tutorial/\#bonus app

Try various relationships...

Word Embeddings

- Plot the embedding vectors

Word Embeddings

- Plot the embedding vectors

Plot shows the relationship between vectors representing related concepts

Word Embeddings

- Plot the embedding vectors

The vectors from countries to capitals point roughly in the same direction

Word Embeddings

- Similarly, learning the gender relationship

Word Embeddings

Q: How can we learn these embeddings automatically?

Word Embeddings

Q: How can we learn these embeddings automatically?

A: Neural Networks are a step ahead embeddings are already learned as "richer" features

Word Embeddings

Neural Networks are a step ahead embeddings are already learned as "richer" features

Word Embeddings

Neural Networks are a step ahead embeddings are already learned as "richer" features

Embedding

Word Embeddings

The overall training task defines the relationships which will be learned by the model
For example:

- In language modeling, the model uses neighboring context thus bringing words with similar context closer
- In doing POS tagging task, words with similar POS tags will come close to each other
- If our network is doing machine translation, the embeddings will be tuned for translation

Word Embeddings

- Generally, task specific embeddings are better than generic embeddings
- In case of small amount of training data, generic embeddings learned on large amount of data works better
- Generic embeddings can also be used as a starting point

Word Embeddings

We can use pre-trained embeddings as well - just initialize the weights in the first layer with some learned embeddings

Pre-trained

Word Embedding Tools

Some tools to learn word embeddings:

- Word2Vec (from Google)
- FastText (from Facebook)
- GloVe (from Stanford)

Word Embeddings

A few pre-trained word embeddings

- GloVe: Wikipedia plus Gigaword https://goo.gl/1XYZhc
- FastText: Wikipedia of 294 languages https://goo.gl/1v423g
- Dependency-based https://goo.gl/tpgw4R

Using pre-trained embeddings in keras:
https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html

