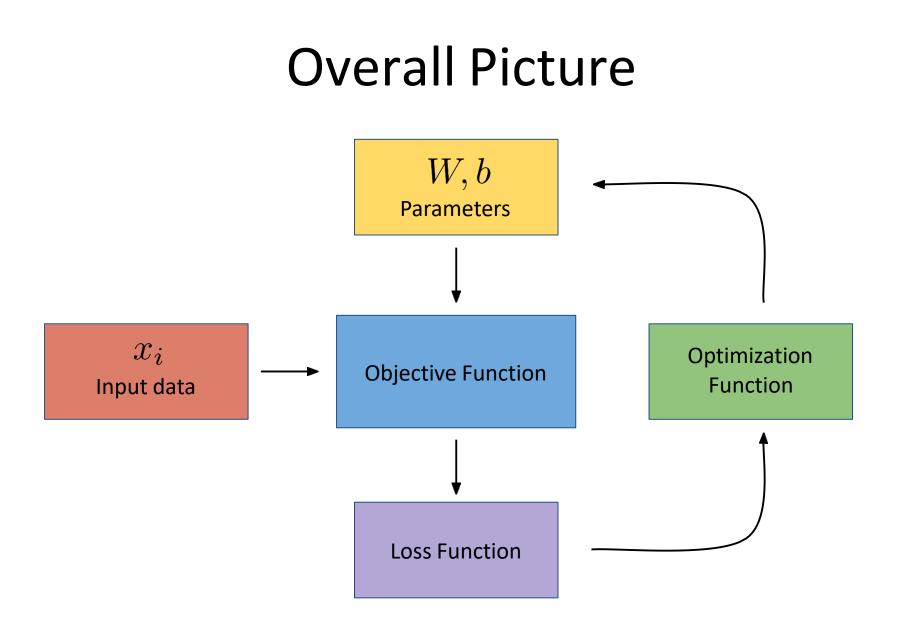
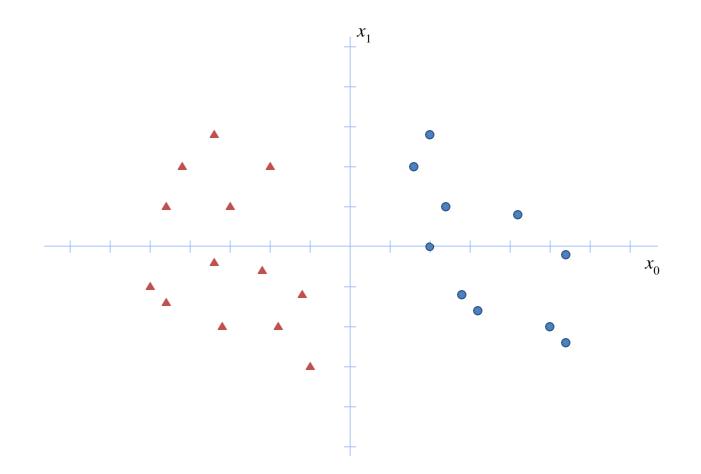
Machine Learning

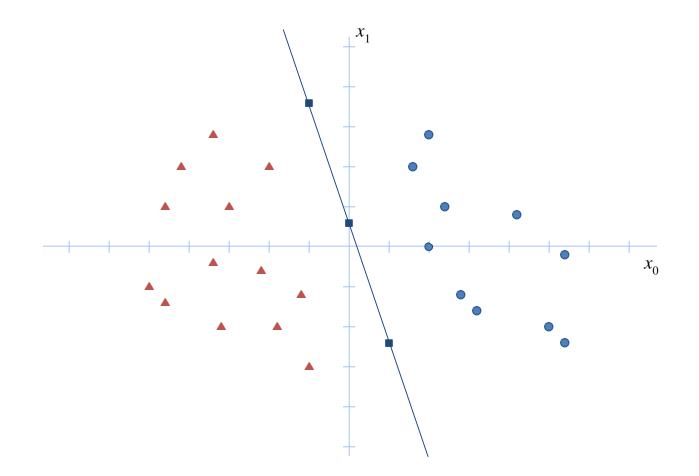
Lecture #3



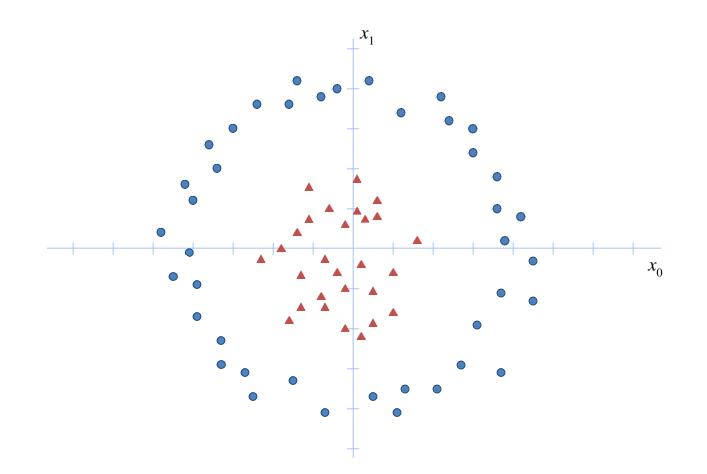
Linear Classifier Recap



Linear Classifier Recap



Linear Classifier?



Linear Separability

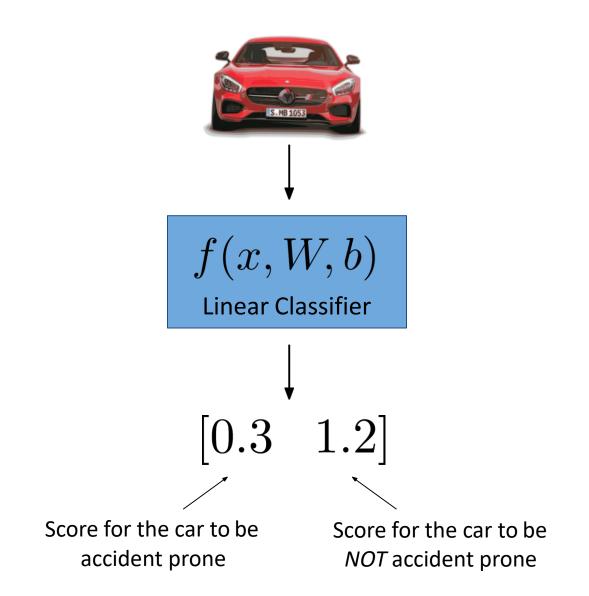
Not all problems are linearly classifiable - i.e. if you plot the examples in space, you cannot draw a line/plane to separate them out

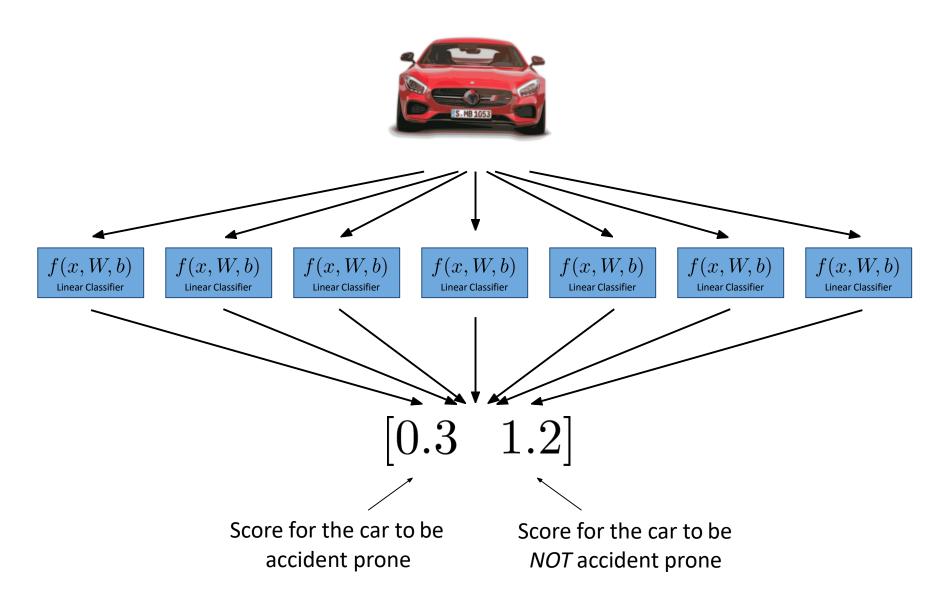
Linear Separability

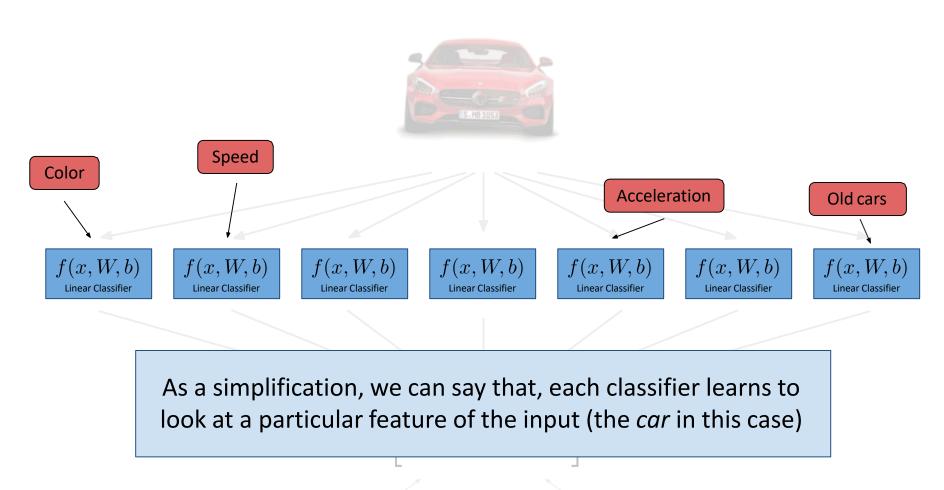
Not all problems are linearly classifiable - i.e. if you plot the examples in space, you cannot draw a line/plane to separate them out

Neural Networks are *one* way to solve this problem

Linear Classifier

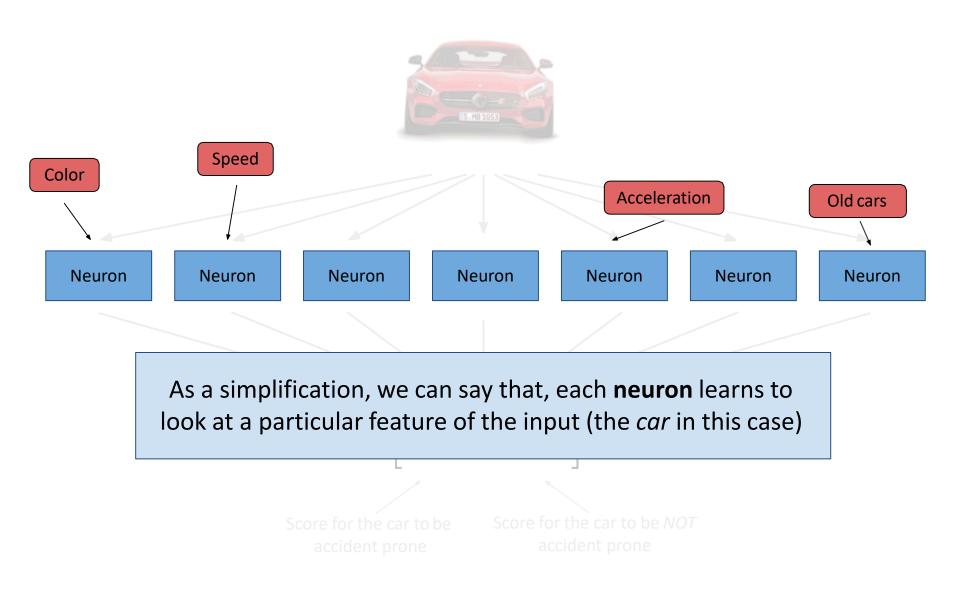


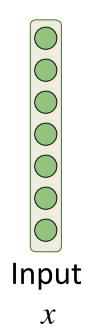


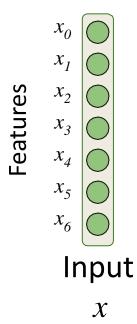


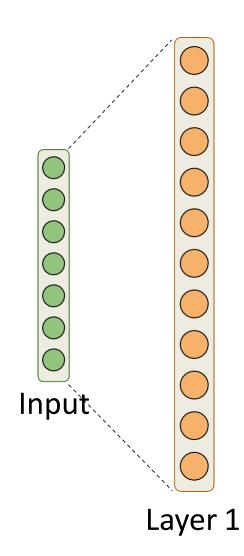
Score for the car to be accident prone

Score for the car to be NOT accident prone

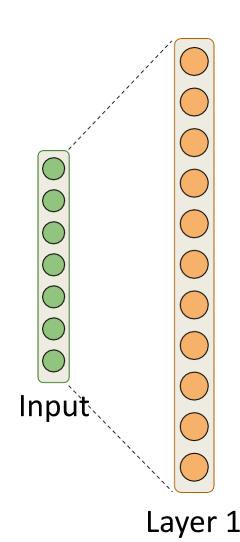




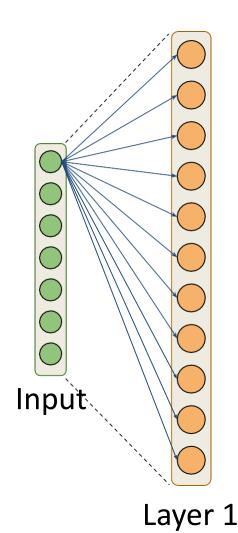




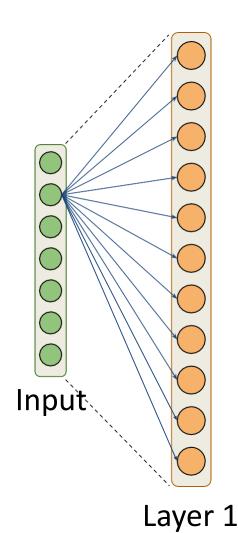
The neurons in the layer can be thought of as representing *richer features*



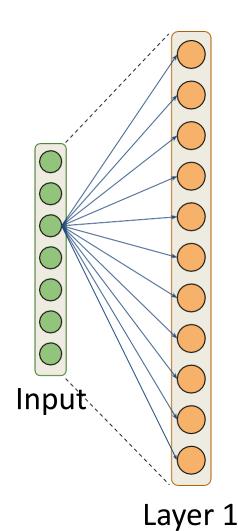
The neurons in the layer can be thought of as representing *richer features*



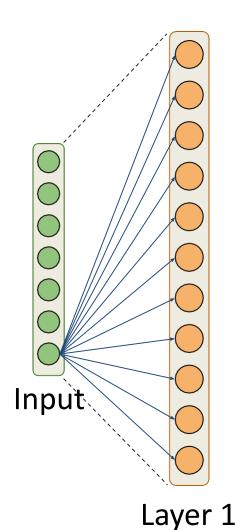
The neurons in the layer can be thought of as representing *richer features*



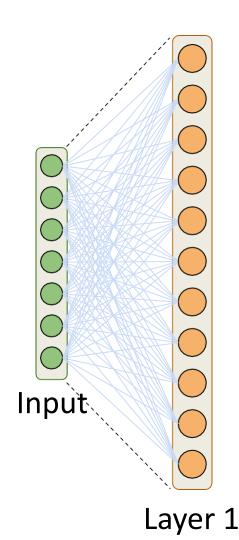
The neurons in the layer can be thought of as representing *richer features*



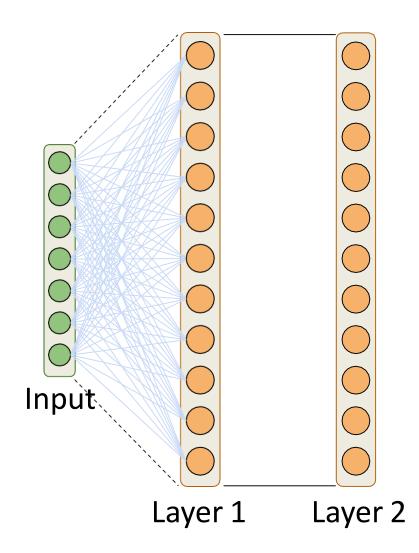
The neurons in the layer can be thought of as representing *richer features*

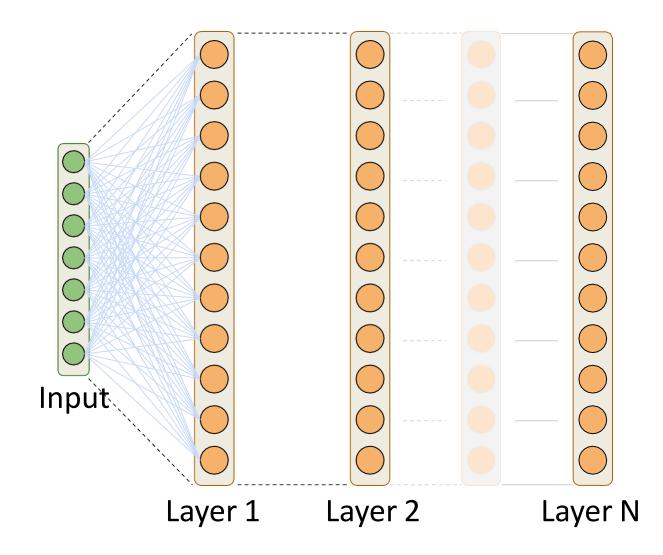


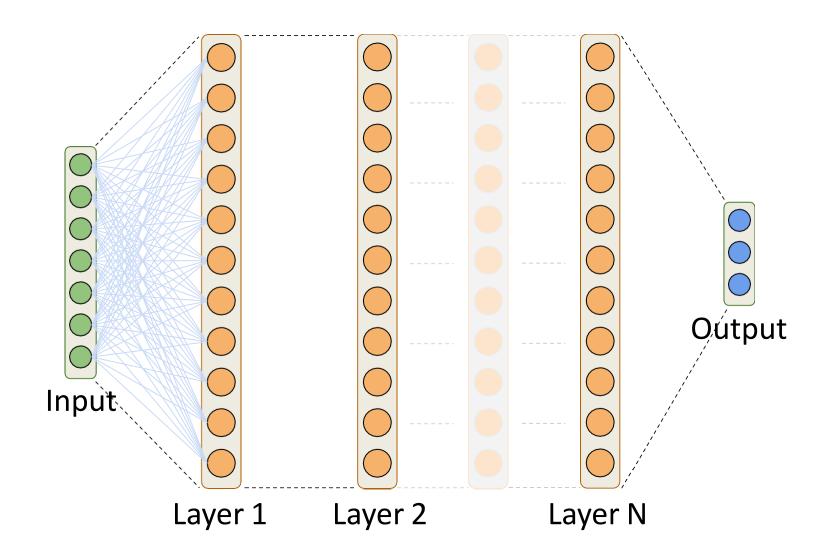
The neurons in the layer can be thought of as representing *richer features*

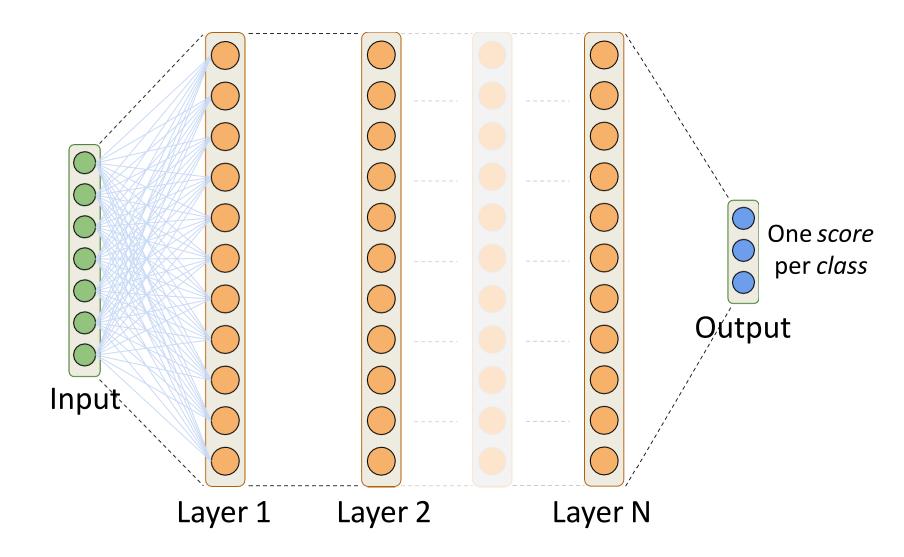


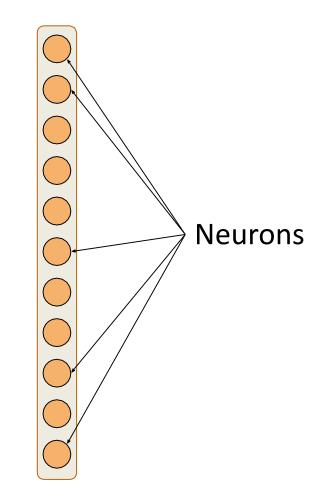
The neurons in the layer can be thought of as representing *richer features*





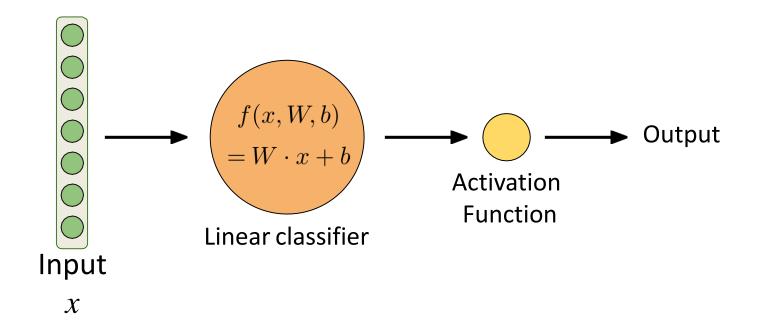






Neuron

A Neuron can be thought of as a linear classifier plus an activation function

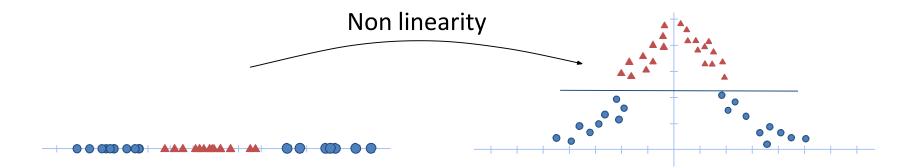


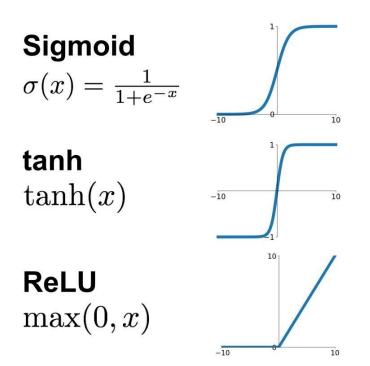
• Intuitively, a neuron looks at a particular feature of the data

- Intuitively, a neuron looks at a particular feature of the data
- The activation after the linear classifier gives us an idea of how much the neuron "supports" the feature

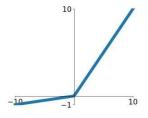
As an example, the output of a neuron will be high if the feature it supports is contained in the input (like "low speed" in the current "car")

- Intuitively, a neuron looks at a particular feature of the data
- The activation after the linear classifier gives us an idea of how much the neuron "supports" the feature
- Activations also helps us map linear spaces into non-linear spaces

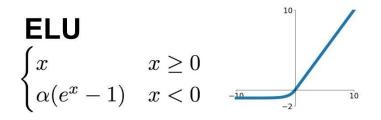




Leaky ReLU $\max(0.1x, x)$



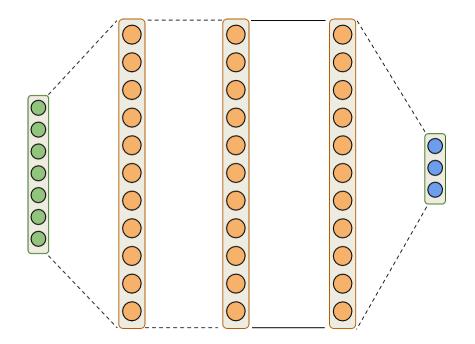
 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$



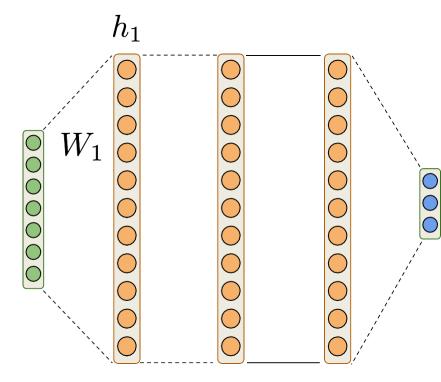
• Entire network is nothing but a function:

$$f = W \cdot x + b$$
Linear classifier

• Entire network is nothing but a function:

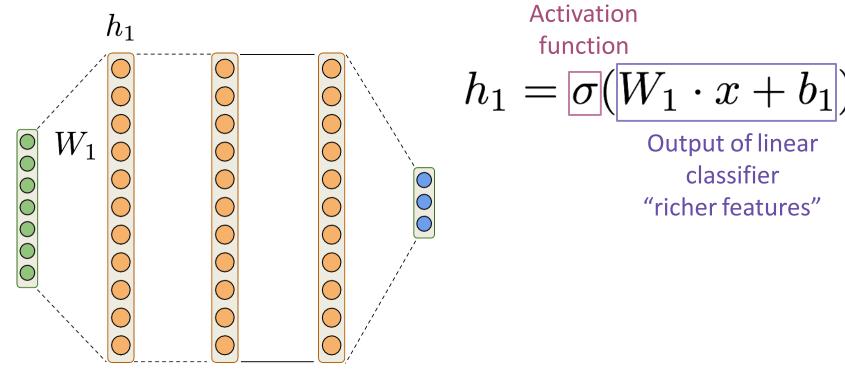


• Entire network is nothing but a function:

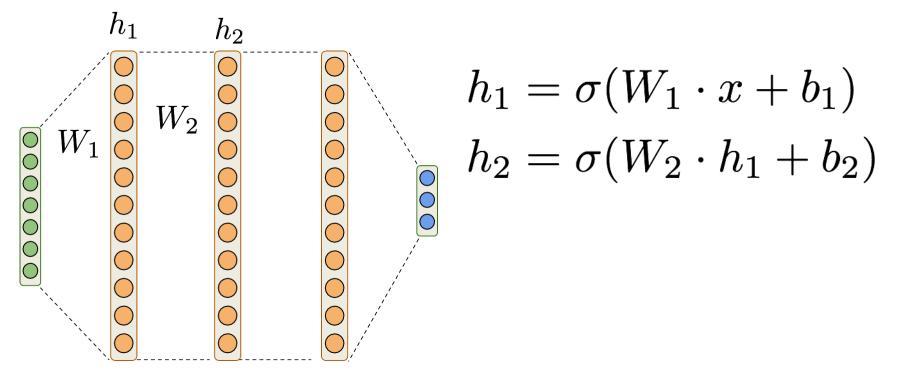


 $h_1 = \sigma(W_1 \cdot x + b_1)$

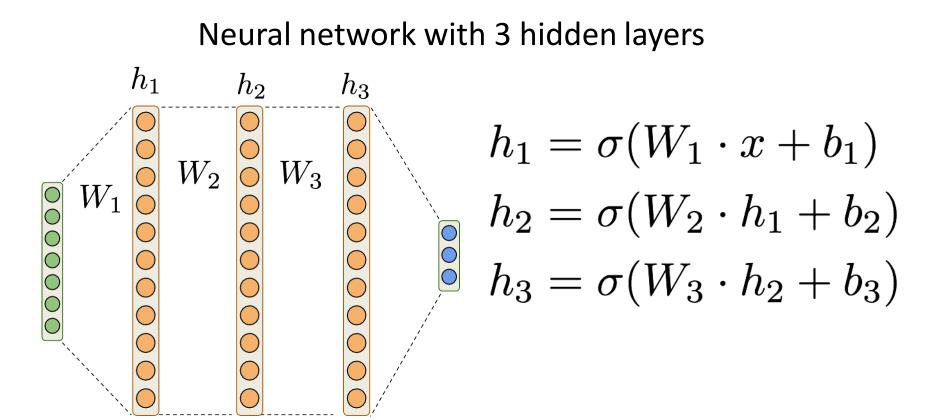
• Entire network is nothing but a function:



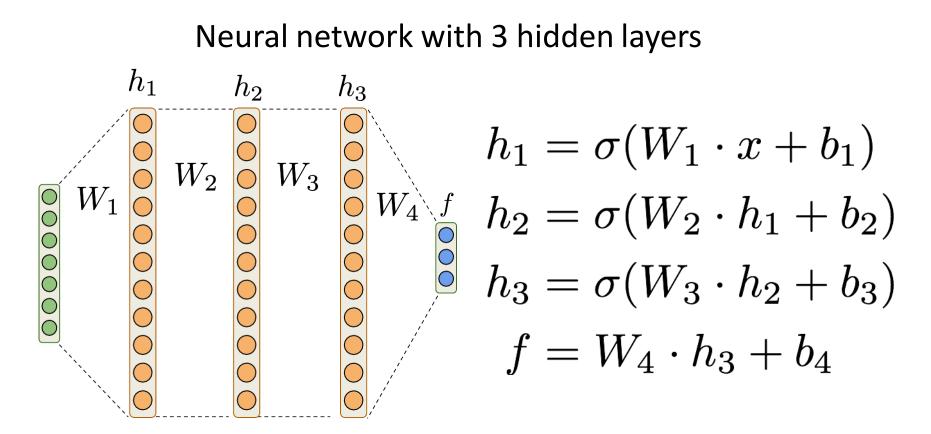
• Entire network is nothing but a function:



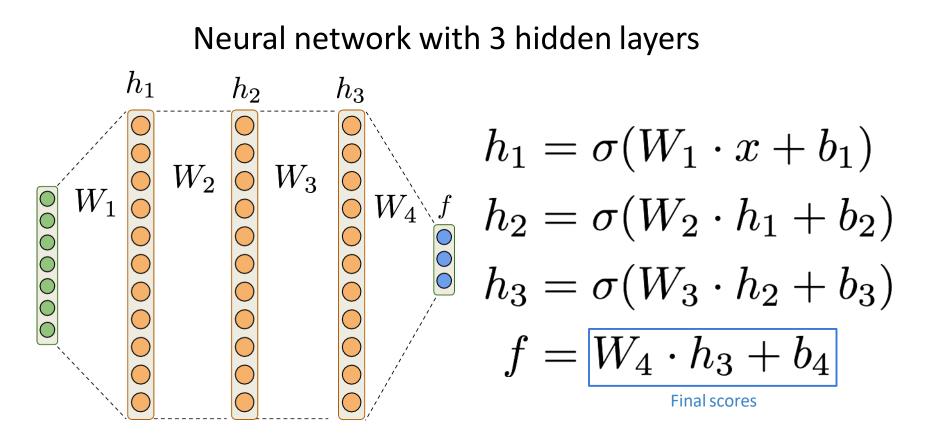
• Entire network is nothing but a function:



• Entire network is nothing but a function:

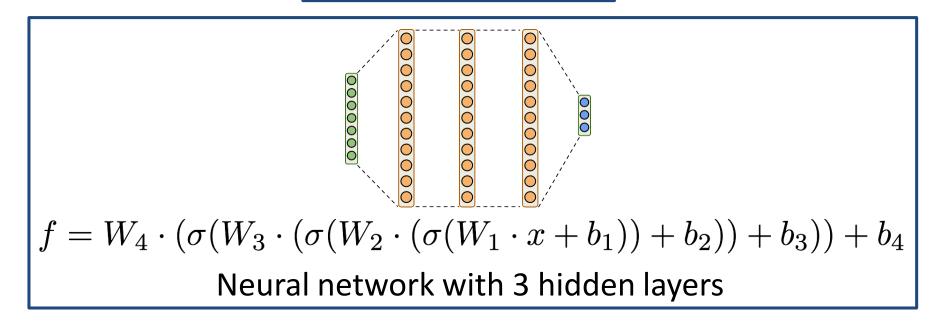


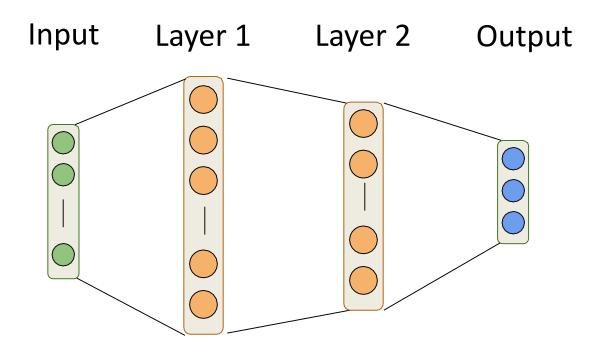
• Entire network is nothing but a function:

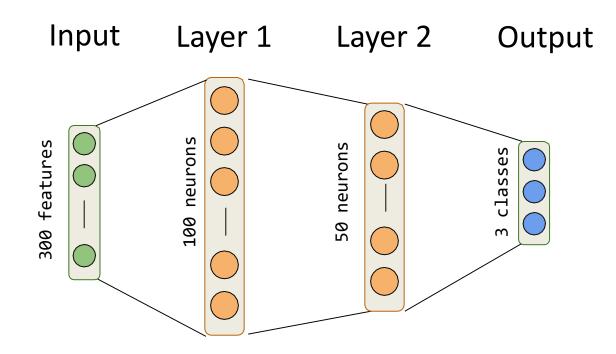


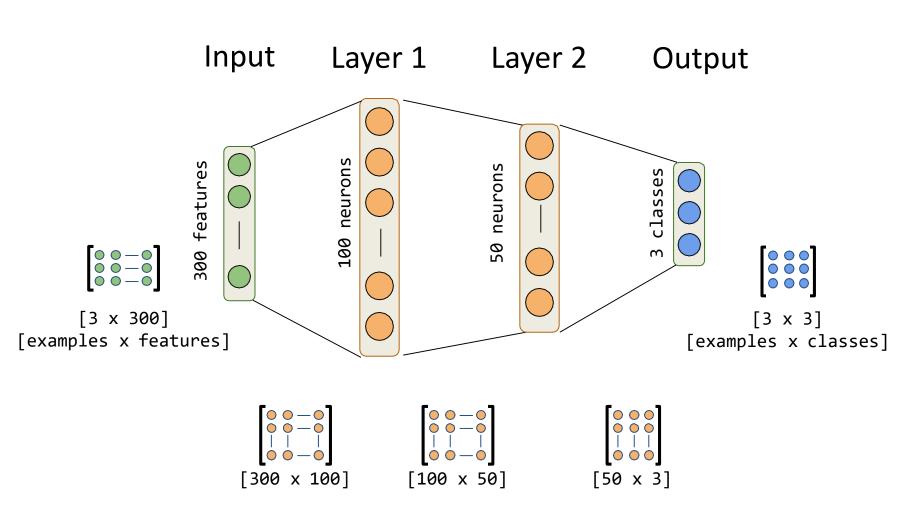
• Everything else remains the same!

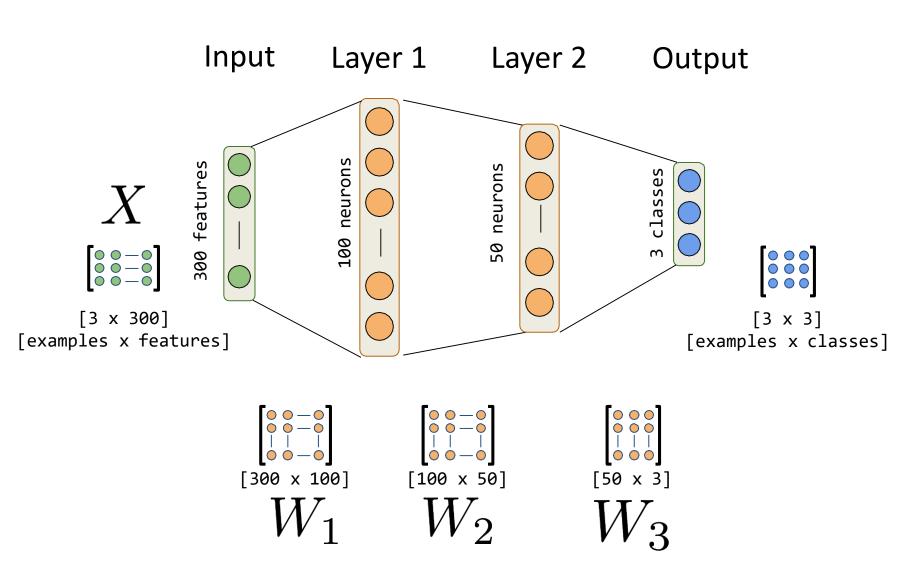
$$f = W \cdot x + b$$
Linear classifier

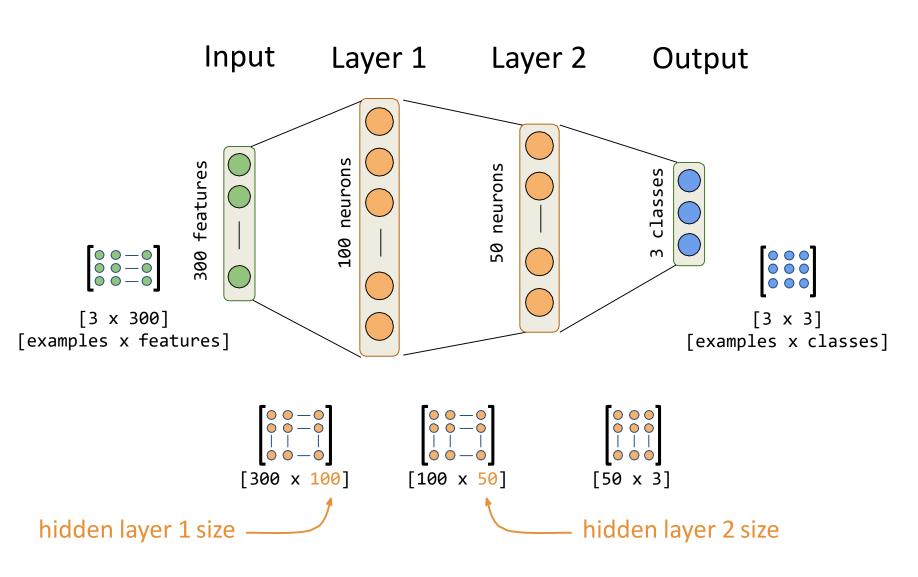


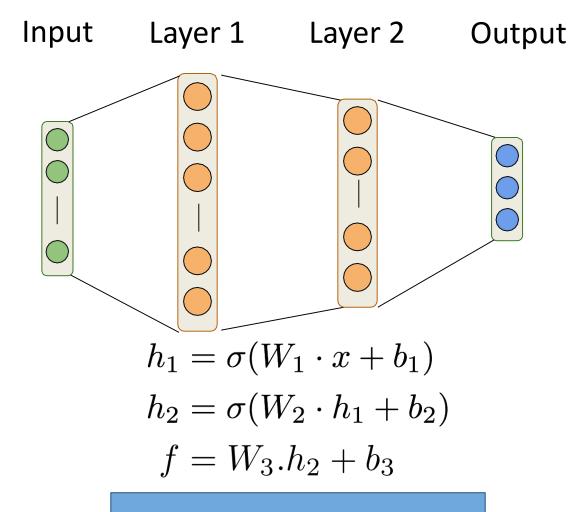




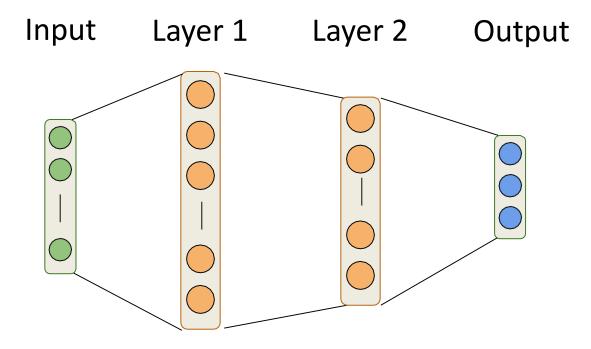






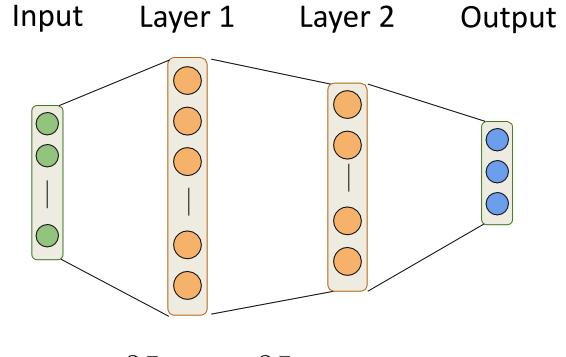


Objective function



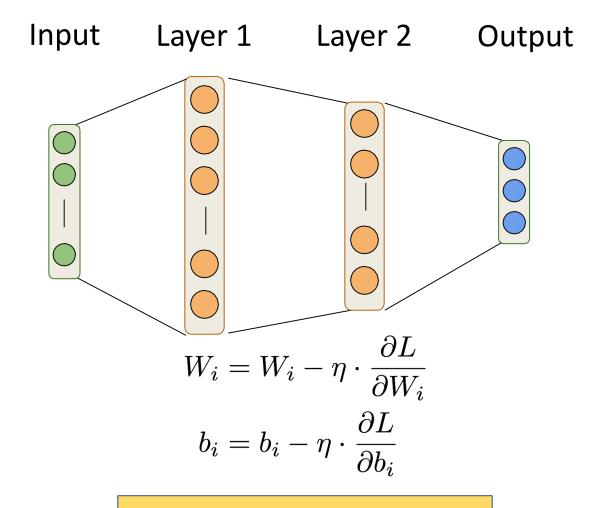
 $L = -\log(f_c)$

Cross Entropy Loss

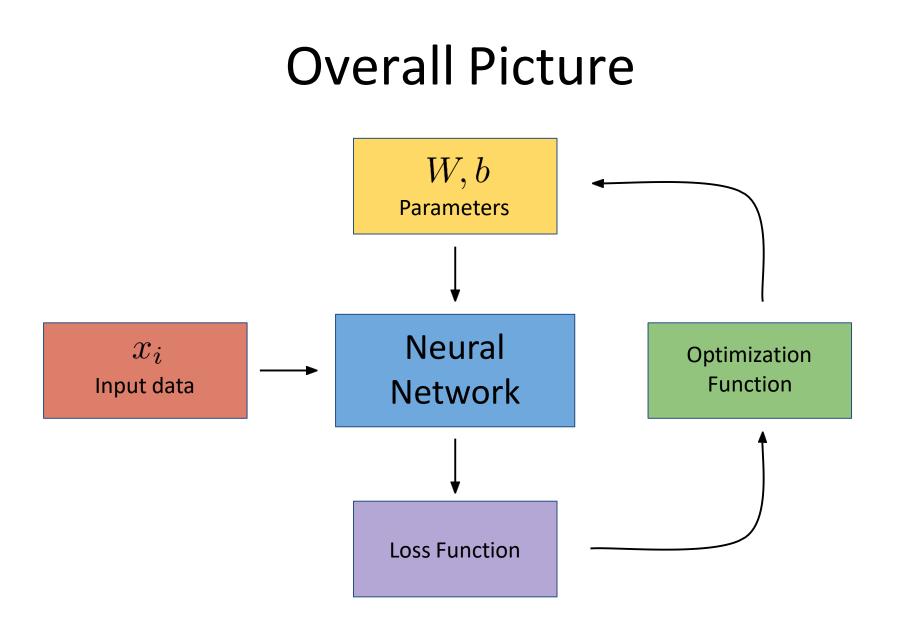


Compute $\frac{\partial L}{\partial W_i}$ and $\frac{\partial L}{\partial b_i}$ using backpropagation

Optimization



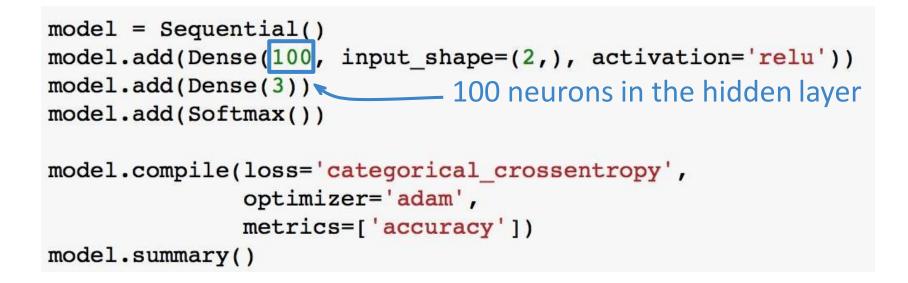
Parameter Update

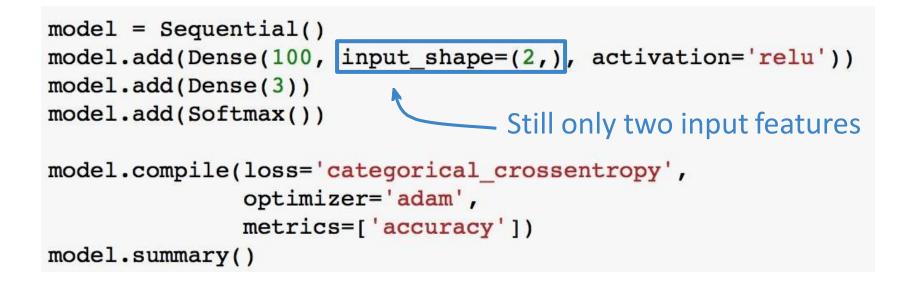


Let's implement a simple two layer neural network model!

Recall the model definition for binary classification:

Recall the model definition for binary classification:





Model definition

All neurons in a single layer conventionally have the same activation

Model definition

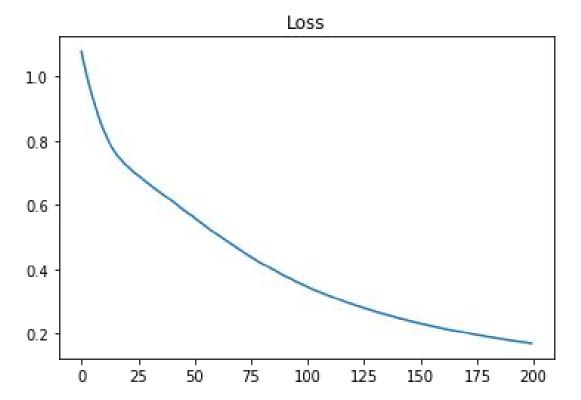
We are using the *Adam* optimizer here instead of *SGD*, since it works much better is the majority of the cases.

Model Learning Curve

```
history = model.fit(X, y_probs, epochs=200, verbose=False)
plt.figure()
plt.plot(history.history['acc'])
plt.title("Accuracy")
plt.ylim((0.0, 1.01))
plt.figure()
plt.plot(history.history['loss'])
plt.title("Loss")
```

As we have seen before, the fit function returns the history of losses. We can plot these values to debug and analyze how our model is learning.

Model Learning Curve



As a general rule, your loss curve should go down with more epochs - we will learn more about this later

Neural network learns the boundaries

