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Objective function defines ourgoal

Objective Function

f ( , W, b) = N Numbers

Input Parameters

P



Objective function defines ourgoal

Objective Function

f ( , W, b) = N Numbers

Input Parameters

P

N can be 1 as in our  

previous example



Objective Function

f ( , W, b) = 1 Number

This 1 number can be a real valued output (for example  

depicting price, age etc). This is called regression.

This 1 number can also be used in the special case of binary  

classification (two classes) like we did in the previous  

exercise - i.e. Class 1 if f > 0 and Class 2 if f ≤ 0



Objective function defines ourgoal

Objective Function

f ( , W, b) = N Numbers

Input Parameters

P

Outputs
N=2 can be used for binary  

classification

Example: scores for the two  

classes - accident prone and  

not accidentprone



Objective function defines ourgoal

Objective Function

f ( , W, b ) = N Numbers

Input Parameters

P

Outputs
N=M can be used for M-class  

classification

Example: M = 40 for POStags



Objective Function

f ( , W, b) = 2 Numbers

Input Parameters

P

Outputs

Learned by the algorithm, just like we learnedW

and b in the previousexercise!

Objective function defines ourgoal
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1 2
Given a set of parameters P={P ,P ,…},  howdo

you know which one to use?

LossFunction
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P3={w1:-3, w2 : -1, b :3}



1 2
Given a set of parameters P={P ,P ,…},  howdo

you know which one to use?

LossFunction
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x1

P
1
={w

1
:3, w

2
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P3={w1:-3,

x
0

w2 : -1, b :3}
We use the concept of loss

Aloss function takes in the output of our model,  

compares it to the true value and then gives us a  

measure of how “far”our model is.



A loss function is any function that gives ameasure

of how far your scores are from their true values

LossFunction



A loss function is any function that gives ameasure

of how far your scores are from their true values

LossFunction

Not accident prone Accident prone

[ 1 . 0 , 0 . 0 ] ← True values → [ 0 . 0 , 1 .0 ]



Consider two cars and three sets ofparameters

Which set of parameters is thebest?

f ( , P1) = [ 0 . 5 , 0 .5 ] f( , P1) = [ 0 . 1 , 0 .9 ]

f ( , P2) = [ 0 . 7 , 0 .3 ] f( , P2) = [ 0 . 3 , 0 .7 ]

f ( , P3) = [ 0 . 1 , 0 .9 ] f( , P3) = [ 0 . 9 , 0 .1 ]

Loss Function Exercise

Not accidentprone Accident prone

P
1

P
2

P
3



Consider two cars and three sets ofparameters

Which set of parameters is thebest?

Loss Function Exercise

Not accidentprone Accident prone

P
1

P
2

P
3

f ( , P1) = [ 0 . 5 , 0 .5 ] f( , P1) = [ 0 . 1 , 0 .9 ]

f ( , P2) = [ 0 . 7 , 0 .3 ] f( , P2) = [ 0 . 3 , 0 .7 ]

f ( , P3) = [ 0 . 1 , 0 .9 ] f( , P3) = [ 0 . 9 , 0 .1 ]

Confused  

model

Less confident but  

correct model

Very confident but  

wrong model



LossFunction

A potential loss function in this case is the sumof  

the absolute difference of scores:

L( ,  P1) = sum(f( ,  P1) - [ 1 . 0 ,  0 .0 ] )

= sum([ | - 0 . 5 |  ,  | 0 . 5 |  ] )  = 1

L( ,  P1) = sum(f( ,  P1) - [ 0 . 0 , 1 . 0 ] )

= sum([ | 0 . 1 | ,  | - 0 . 1 |  ] )  = 0.2



LossFunction

A potential loss function in this case is the sumof  

the absolute difference of scores:

L( ,  P1) = sum(f( ,  P1) - [ 1 . 0 ,  0 .0 ] )

= sum([ | - 0 . 5 |  ,  | 0 . 5 |  ] )  = 1

L( ,  P1) = sum(f( ,  P1) - [ 0 . 0 , 1 . 0 ] )

= sum([ | 0 . 1 | ,  | - 0 . 1 |  ] )  = 0.2

Number of classes



A potential loss function in this case is the sumof  

the absolute difference of scores:

L( ,  P1) = sum(f( ,  P1) - [ 1 . 0 ,  0 .0 ] )

= sum([ | - 0 . 5 |  ,  | 0 . 5 |  ] )  = 1

L( ,  P1) = sum(f( ,  P1) - [ 0 . 0 , 1 . 0 ] )

= sum([ | 0 . 1 | ,  | - 0 . 1 |  ] )  = 0.2

L( ,  P2) = 0.6 L( ,  P2) = 0.6

L( ,  P3) = 1.8 L( ,  P3) = 1.8

LossFunction



LossFunction

Average loss f o r  both cars

L(P1) = 0.6 L(P2) = 0.6 L(P3) = 1.8

A potential loss function in this case is the sumof  

the absolute difference of scores:

L( ,  P1) = sum(f( ,  P1) - [ 1 . 0 ,  0 .0 ] )

= sum([ | - 0 . 5 |  ,  | 0 . 5 |  ] )  = 1

L( ,  P1) = sum(f( ,  P1) - [ 0 . 0 , 1 . 0 ] )

= sum([ | 0 . 1 | ,  | - 0 . 1 |  ] )  = 0.2

L( , P2) = 0.6 L( ,  P2) = 0.6

L( , P3) = 1.8 L( ,  P3) = 1.8



LossFunction

Average loss f o r  both cars

L(P1) = 0.6 L(P2) = 0.6 L(P3)  = 1.8

A lower value of the loss indicates a bettermodel

i.e. we are closer to the true values

In this case, P
1 
and P

2 
have the lower value of 0.6, so we know theyare better  

than P
3
. However, we also know that P

2
is better than P

1
, and this implies our  

loss function is not very good rightnow!



Better lossfunction:

Loss is equal to the sum of the square of the  

differences in the scores

LossFunction

Mean Squared Error



f ( , P1) = [ 0 . 5 , 0 .5 ] f ( , P1) = [ 0 . 1 , 0 .9 ]

f ( , P2) = [ 0 . 7 , 0 .3 ] f ( , P2) = [ 0 . 3 , 0 .7 ]

f ( , P3) = [ 0 . 1 , 0 .9 ] f ( , P3) = [ 0 . 9 , 0 .1 ]

Better lossfunction:

Loss is equal to the sum of the square of the  

differences in the scores

LossFunction

Mean Squared Error



Better lossfunction:

Loss is equal to the sum of the square of the  

differences in the scores

MSE( , P1) = 0.50 MSE( , P1) = 0.02

MSE( , P2) = 0.18 MSE( , P2) = 0.18

MSE( , P3) = 1.62 MSE( , P3) = 1.62

LossFunction

Mean Squared Error



Better lossfunction:

Loss is equal to the sum of the square of the  

differences in the scores

MSE( , P1) = 0.50 MSE( , P1) = 0.02

MSE( , P2) = 0.18 MSE( , P2) = 0.18

MSE( , P3) = 1.62 MSE( , P3) = 1.62

LossFunction

L(P1) = 0.26

Average loss  

L(P2) = 0.18 L(P3) = 1.62

Mean Squared Error



Mean Squared Error works better, as itpenalizes  

values that are further away from the true value

LossFunction



Many other choices for lossfunctions:

• Absolute Distance loss

• Hinge loss

• Logistic loss

• Cross Entropy loss

⋮

LossFunction



Loss function is also known as the cost function

in someliterature

LossFunction
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Optimization

Now that we have a way of definingloss, we need  

a way to use it to improve our parameters

This process is called optimization - where our  

goal is to “minimize” the loss function, i.e. bring it  

as close to zero aspossible



Optimization Exercise

Higher Lower

Very far Far Close Very close

Find the value of x in the following equation:

x + 5 = ?

For every guess you will get the followinghints:

Direction:

Error:



Optimization Exercise
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Optimization Exercise

45
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58

25

55
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48

47
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45

Just like you did the exercise of updating x based  

on our feedback, machines can also look at the  

loss (“Higher”, “Very far”) and decide to update  

x appropriately



Optimization Exercise

45

15

58

25

55

20
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48

47

46

45

Optimization algorithms use the loss value to  

mathematically nudge the parameters P ofthe  

objective function to be more“correct”



What are some strategies you used to optimizex?

Optimization Exercise



• Potential Solution: Guess randomly each time

• Pros:

– Very simple

• Cons:

– Not very efficient

– loss value isunused

– Potentially may never find a goodsolution

Optimization: RandomSearch



• Better Solution: Gradient basedsearch

Optimization: Gradient Search



• Better Solution: Gradient basedsearch

• Every function can be represented in space

Optimization: Gradient Search



• Better Solution: Gradient basedsearch

• Every function can be represented in space

Optimization: Gradient Search

Any loss function can also be representedin  

space



• Better Solution: Gradient basedsearch

• Our goal is tominimize the loss, i.e. find a set of  

parameters P such that the loss is close to zero

Optimization: Gradient Search



• Better Solution: Gradient basedsearch

• Our goal is tominimize the loss, i.e. find a set of  

parameters P such that the loss is close to zero

Optimization: Gradient Search



• Better Solution: Gradient basedsearch

• Our goal is tominimize the loss, i.e. find a set of  

parameters P such that the loss is close to zero

Optimization: Gradient Search

Minimum value of theloss function



Functions are just like terrain - theyhave  

mountains and valleys

We want to minimizeloss,

i.e. go to the bottom of the terrain

Optimization: Gradient Search



Q: Imagine you are blindfolded on a mountain, how  

will you go to thebottom?

Optimization: Gradient Search



Q: Imagine you are blindfolded on a mountain, how  

will you go to thebottom?

A: Sense the slope around you, and move in the  

direction where the slope pointsdownwards

Optimization: Gradient Search



Concept of gradient == “your sense of slope”for  

the lossfunction

The gradient of a function is mathematically  

defined as the slope of the tangent i.e. slope at any  

given point on the function

Optimization: Gradient Search



Optimization: Gradient Search

Tangent at x = 0.8

Slope = 1.6

Tangent at x =1.5

Slope = 3.0



Once we know the direction, we can movetowards  

the minimum.

Are we done?

Optimization: Gradient Search



How far should wemove?

The step size or learning rate defines how big astep  

we should take in the direction of the gradient

Optimization: LearningRate



How far should wemove?

The step size or learning rate defines how big astep  

we should take in the direction of the gradient

It must be well controlled - too small a step and it  

may take a long time to reach the bottom - too big  

a step and we may miss the minimum all together!

Optimization: LearningRate



Various optimization algorithms

Optimization

Alec Radford (Reddit)

https://www.reddit.com/r/MachineLearning/comments/2gopfa/visualizing_gradient_optimization_techniques/cklhott/


Local Minima

Minimum value of thefunction Local minimum value of thefunction



Local Minima

Minimum value of thefunction Local minimum value of thefunction

Optimization algorithm may get “stuck” at

local minimum of afunction



Optimization

• How can we compute the slope of thefunction?

• Compute gradients analytically

• Backpropagation



Let us compute the gradient of MSEanalytically

Optimization



But what if the function was slightly more  

complicated:

Optimization



But what if the function was slightly more  

complicated:

Optimization

Analytical gradients become muchmore  

complicated and tedious to compute!



But what if the function was slightly more  

complicated:

Optimization

Backpropagation to the rescue!



Backpropagation

Backpropagation is a technique to compute  

gradients of any function with respect toa variable  

using the concept of a computationgraph



Computation graph: Graphical way of describing  

any function:

Backpropagation



Intuition

• Divide the loss function into smalldifferentiable  

steps

• Calculate the gradient of each small step and use

chain rule to calculate the gradient of your input

parameters

Backpropagation



To complete the picture, we can then use the  

gradients to update the parametersusing gradient  

descent

Optimization



To complete the picture, we can then use the  

gradients to update the parametersusing gradient  

descent

Recall: We want to take a “step” in the direction of  

the slope

Optimization



To complete the picture, we can then use the  

gradients to update the parametersusing gradient  

descent

Optimization



To complete the picture, we can then use the  

gradients to update the parametersusing gradient  

descent

Optimization

Step size  

Learning rate
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Multiclass Classification

Let us now look at another complete exampleof  

classification



Multiclass Classification

Recall that we have been using linear regression so  

far and making decisions based on the sign of the  

output

f ( , W, b) = 1 Real Number

Output
If the number isless  

than 0, it isaccident  

prone, else it is not  

accident prone



Multiclass Classification

In general, we design our function f such that we  

output one number perclass:

Outputs
The scores for the two  

classes - accident  

prone and not  

accident prone

f ( , W, b) = 2 Numbers



Multiclass Classification

From now on, we will use this generalizedtechnique,  

since it can be easily extended to more than two  

classes

Outputs
M scores for the

M classes

f ( , W, b) = Numbers



Multiclass Classification

From now on, we will use this generalizedtechnique,  

since it can be easily extended to more than two  

classes

Everything else remains the same - the lossfunctions  

now operates on vectors instead of realnumbers

f ( , W, b) = Numbers  

(vec tor )



Multiclass Classification

Vector

Real  

number

Linear Regression



Multiclass Classification

Vector

Real  

number

Linear Regression



Multiclass Classification

Matrix Vector

Multi-class LinearClassification

scores



In regression:

In classification:

Multiclass Classification
Prediction

f ( , W, b ) >= 0

argmax(f( , W, b ) )

Pick the class with the  

highest score



Softmax function



Softmax

With the argmax function, our classifier has always

output some “scores”, and we just pick whichever

score is higher:

f ( , W, b) = 2 Numbers

Outputs
The scores for the two  

classes - accident  

prone and not  

accident prone



Softmax

However, these scores are not interpretable.  

Their absolute values don’t give us any insight,we  

can only compare them relatively

f ( , W, b) = 2 Numbers

Outputs
The scores for the two  

classes - accident  

prone and not  

accident prone



Softmax

The softmax function helps us transform these  

values into probability distributions:

Scores from the classifier Scores as a probability  

distribution



Softmax

The softmax function helps us transform these  

values into probability distributions:

Softmax

-1.85

0.42

0.15

0.06

0.54

0.40



-1.85

0.42

0.15

Softmax

Softmax

0.06

0.54

0.40

scores sum to one

The softmax function helps us transform these  

values into probability distributions:

each output can be treated as the  

probability of thatclass



-1.85

0.42

0.15

Softmax

Softmax

0.06

0.54

0.40

The Softmax function also acts as a normalizer, i.e. we can now  

compare scores from different models and examplesdirectly

scores sum to one

The softmax function helps us transform these  

values into probability distributions:

each output can be treated as the  

probability of thatclass



Cross Entropy Loss



RecallMSE:

Cross Entropy Loss

Mean SquaredError



Cross Entropy Loss

RecallMSE:

We saw that MSE is better than just takingthe  

absolute difference:

Mean SquaredError



Cross Entropy Loss

RecallMSE:

In practice, we use Cross Entropy loss, which

generally performs better for more complex

models.

Mean SquaredError



Here, y represents the true probabilitydistribution  

(so y
i 
= 1 for the correct class i, and 0otherwise)

f
i 
represents the score of class i from ourclassifier

Cross Entropy Loss



Cross Entropy Loss

Simplifying for ourcase,

if c is the correct class, then yc = 1, and all other yi’s are 0

Therefore, we only have one element left from the summation



Cross Entropy Loss



Cross Entropy Loss

Mean SquaredError CrossEntropy



Cross Entropy Loss

Why cross entropy?

Consider three people, Person1 is a Democrat, Person2 is a  

Republican and Person3 is Other. We have two models to  

classify these people:

SOther SRepublican SDemocrat

Person1 0.3 0.3 0.4

Person2 0.3 0.4 0.3

Person3 0.1 0.2 0.7

SOther SRepublican SDemocrat

Person1 0.1 0.2 0.7

Person2 0.1 0.7 0.2

Person3 0.3 0.4 0.3

Model 1 Model 2



Cross Entropy Loss

Both models misclassify Person3, but is one modelbetter  

than the other?

SOther SRepublican SDemocrat

Person1 0.3 0.3 0.4

Person2 0.3 0.4 0.3

Person3 0.1 0.2 0.7

SOther SRepublican SDemocrat

Person1 0.1 0.2 0.7

Person2 0.1 0.7 0.2

Person3 0.3 0.4 0.3

Model 1 Model 2



Cross Entropy Loss

Model 2 is better, since it classifies Person1 andPerson2  

with higher scores on the correct class, andmis-classifies  

Person3 witha smaller error in the scores

SOther SRepublican SDemocrat

Person1 0.3 0.3 0.4

Person2 0.3 0.4 0.3

Person3 0.1 0.2 0.7

SOther SRepublican SDemocrat

Person1 0.1 0.2 0.7

Person2 0.1 0.7 0.2

Person3 0.3 0.4 0.3

Model 1 Model 2



Cross Entropy Loss

Person1: 0.54

Person2: 0.54

Person3: 1.34

Model 1 Average:0.81

SOther SRepublican SDemocrat

Person1 0.3 0.3 0.4

Person2 0.3 0.4 0.3

Person3 0.1 0.2 0.7

SOther SRepublican SDemocrat

Person1 0.1 0.2 0.7

Person2 0.1 0.7 0.2

Person3 0.3 0.4 0.3

Model 1 Model 2

Mean SquaredError

Person1: 0.14

Person2: 0.14

Person3: 0.74

Model 2 Average:0.34



Cross Entropy Loss

Person1: -log(0.4) = 0.92

Person2: -log(0.4) = 0.92

Person3: -log(0.1) = 2.30

Model 1 Average:1.38

SOther SRepublican SDemocrat

Person1 0.3 0.3 0.4

Person2 0.3 0.4 0.3

Person3 0.1 0.2 0.7

SOther SRepublican SDemocrat

Person1 0.1 0.2 0.7

Person2 0.1 0.7 0.2

Person3 0.3 0.4 0.3

Model 1 Model 2

CrossEntropy

Person1: 0.36

Person2: 0.36

Person3: 1.20

Model 2 Average:0.64



Cross Entropy Loss

SOther SRepublican SDemocrat

Person1 0.3 0.3 0.4

Person2 0.3 0.4 0.3

Person3 0.1 0.2 0.7

SOther SRepublican SDemocrat

Person1 0.1 0.2 0.7

Person2 0.1 0.7 0.2

Person3 0.3 0.4 0.3

Model 1 Model 2

CrossEntropy

Model 1Average: 1.38 Model 2 Average:0.64

Model 1Average: 0.81 Model 2 Average:0.34

Mean SquaredError



Cross Entropy Loss

CrossEntropy

Model 1Average: 1.38 Model 2 Average:0.64

Model 1Average: 0.81 Model 2 Average:0.34

Mean SquaredError

Cross Entropy Loss difference between the two models  

is greater than the Mean SquaredError!



Cross Entropy Loss

In general, Mean Squared Error penalizes  

incorrect predictions much more than Cross  

Entropy



Cross Entropy Loss

A more principled reason arises from the  

underlying mathematics of MSE and Cross  

Entropy

MSE causes the gradients to become very small  

as the network scores become better, so  

learning slows down!



Cross Entropy and Softmax



Cross Entropy and Softmax

Cross Entropy is mathematically defined to  

compare two probabilitydistributions



Cross Entropy and Softmax

Cross Entropy is mathematically defined to  

compare two probabilitydistributions

Our ground truth is already represented asa probability

distribution (with all the probability mass on the correct

class)

0.00

1.00

0.00

y =



Cross Entropy and Softmax

Cross Entropy is mathematically defined to  

compare two probabilitydistributions

However, the scores directly from a linear classifier donot  

form any suchdistribution:

-1.85

0.42

0.15

f =



Cross Entropy and Softmax

Cross Entropy is mathematically defined to  

compare two probabilitydistributions

Solution: Usesoftmax!

0.06

0.54

0.40

sof tmax(f ) =



Putting it alltogether

Linear Classifier
Softmax CrossEntropy



Summary

• Classification

• Objective function

• Loss function
– sum of absolutedifferences
– mean squared error

• Optimization
– random search

– gradient search

– backpropagation


