Lecture #1

Introduction to Machine Learning

Atechnique that gives machines the ability to learn, without any explicit programming

In simpler terms, a machine should be able to see some data, and learn to make decisions based on what it hasseen

An example: You are a car dealer, and you have a historical record of **which cars are accident prone**. How can you "teach" a computer to predict which *new* cars will be accident prone?

	Maximum Speed	Acceleration	Color	Car age	Accident Prone?
Car 1	240 km/h	Fast	Red	2 yrs	Yes
Car 2	100 km/h	Fast	Yellow	2 yrs	No
Car 3	240 km/h	Fast	Blue	1 yr	No
Car4	200 km/h	Slow	Blue	5 yrs	Yes
Car 5	100 km/h	Fast	Yellow	5 yrs	Yes
Car6	100 km/h	Slow	Black	6 yrs	No
Car7	150 km/h	Fast	Red	2 yrs	?

How can you make your decision? Search for closest vehicle in the past? Come up with a set of rules? How can you decide what knowledge is important?

Historically, rule based systems were common:

```
if (car.acceleration = fast and car.age > 1 and ...)
    print ("accident prone")
else if (car.acceleration = slow and car.maxspeed > 150 and ...)
    print ("accident prone")
else if (car.acceleration = slow and car.maxspeed < 50)
    print ("not accident prone")
else if</pre>
```

Domain Specific

. . .

. . .

Cumbersome

Not easy to learn from newdata

Then, machine learning techniques came about...

 Domain Agnostic
 Robust
 Easy to learn from new data

Let's talk about training data

Training Data

	Maximum Speed	Acceleration	Color	Carage	Accident Prone?
Car1	240 km/h	Fast	Red	2 yrs	Yes
Car 2	100 km/h	Fast	Yellow	2 yrs	No
Car3	240 km/h	Fast	Blue	1 yr	No
Car4	200 km/h	Slow	Red	5 yrs	Yes
Car 5	100 km/h	Fast	Yellow	5 yrs	Yes
Car6	100 km/h	Slow	Black	6 yrs	No
Input Features					Labels

We use training examples with labels to train a model

Algorithms use this training data

In this case, we have labels for each car. This class of problems is handled by *supervised learning algorithms*.

Unsupervised learning algorithms work on unlabelled data

In this case, we have labels for each car. This class of problems is handled by *supervised learning algorithms*.

Unsupervised learning algorithms work on unlabelled data

In this case, we have labels for each car. This class of problems is handled by *supervised learning algorithms*.

Unsupervised learning algorithms work on unlabelled data

Many techniques exist to build models:

- "Finding similar cars" type methods:
 - K-means clustering
 - Hierarchical clustering
- "Create set of rules" type methods:
 - Support vector machines
 - Logistic Regression
 - Neural Networks

Many techniques exist to build models:

•	"Finding similar cars" type methods:	
	 K-means clustering 	
	 Hierarchical clustering 	Unsupervised
٠	"Create set of rules" type methods:	
	 Support vector machines 	
	 Logistic Regression 	
	 Neural Networks 	Supervised
		-

Algorithms use this training data to produce a model

Example of a model: A function that takes information about a car, and predicts whether it's accident prone or not

$$f(\bigcirc \bigcirc \bigcirc) = No$$
$$f(\bigcirc \bigcirc \bigcirc \bigcirc) = Yes$$

Example of a model: A function that takes a word, and predicts it's part of speech tag

f("car") = Noun f("beautiful") = Adjective f("she") = Pronoun

At a high level, the basic idea is to figure out which features are important, and how important are theyfor prediction

> 0.3 x car.maxspeed + 0.2 x car.acceleration + 0.0 x car.color + 0.5 x car.age

At a high level, the basic idea is to figure out which features are important, and how important are theyfor prediction

> 0.3 x car.maxspeed + 0.2 x car.acceleration + 0.0 x car.color + 0.5 x car.age

An older car is more likely to be accident prone

At a high level, the basic idea is to figure out which features are important, and how important are theyfor prediction

The color of a car has no impact on accidents

At a high level, the basic idea is to figure out which features are important, and how important are theyfor prediction

Feature Weights

Supervised Learning: Classification

Process of assigning objects to categories

For example, Car 1 belongs to category "Accident Prone"

	Maximum Speed	Acceleration	Color	Car age	Accident Prone?
Car 1	240 km/h	Fast	Red	2 yrs	Yes
Car 2	100 km/h	Fast	Yellow	2 yrs	No
Car 3	240 km/h	Fast	Blue	1 yr	No
Car4	200 km/h	Slow	Blue	5 yrs	Yes
Car 5	100 km/h	Fast	Yellow	5 yrs	Yes
Car6	100 km/h	Slow	Black	6 yrs	No

Supervised Learning

Process of predicting values or categories

Supervised Learning

Process of predicting values or categories

• We will start by looking at a simple technique -Linear classification for two classes

- We will start by looking at a simple technique -Linear classification for two classes
- Our model/function will predict justone real number
- If this number is < 0, we will consider it to belong to Class 1. If it is ≥ 0, we will consider it to belong to Class 2.

• Choose w_0 , w_1 and b such that positive examples give a result > 0 and negative examples give a result < 0

$$w_0 \times x_0 + w_1 \times x_1 + b$$

x_0	x_1	Class
2	0	Positive
5	-2	Positive
-2	2	Negative
-1	-3	Negative

• Choose w_0 , w_1 and b such that positive examples give a result > 0 and negative

examples gi 0.3 x car.maxspeed + 0.2 x car.acceleration + 0.0 x car.color w_0 + 0.5 x car.age \mathcal{X} 2 0 Positive 5 -2 Positive 2 -2 Negative -1 -3 Negative

• Choose w_0 , w_1 and b such that positive examples give a result > 0 and negative examples give a result < 0

$$w_0 \times x_0 + w_1 \times x_1 + b$$

x_0	x_1	Class
2	0	Positive
5	-2	Positive
-2	2	Negative
-1	-3	Negative

Find weights that separate positive examples from negative examples $+^{x_1} \qquad w_0 \times 2 + w_1 \times 0 + b > 0$

• Potential Solution: $w_0 = 3$, $w_1 = 1$ and b = 3

• Potential Solution: $w_0 = 3$, $w_1 = 1$ and b = 3

 $w_0 \times x_0 + w_1 \times x_1 + b = 0$ should define a decision boundary $3 \times x_0 + 1 \times x_1 + 3 = 0$ defines one such decision boundary Positive examples will be on one side of the boundary, and negative examples on the other

 $w_0 \times 2 + w_1 \times 0 + b > 0$

()

0

 $\mathbf{0}$

• Potential Solution: $w_0 = 3$, $w_1 = 1$ and b = 3

Binary Classification

What did we do?

- We were given a set of points in space
- We tried to draw a line to separate the "positive" points from the "negative" points
- The line was defined using "feature weights"

Vector Spaces

Imagine every feature as a dimension in space Every object (car) can be represented as a point in space

Vector Spaces

Lifecycle of Training a Machine Learning Model

$$f(x, W, b) = W \cdot x + b$$

$$f(x, W, b) = W \cdot x + b$$

This 1 number can be a real valued output (for example depicting price, age etc). This is called regression.

This 1 number can also be used in the special case of binary classification (two classes) like we did in the previous exercise - i.e. Class 1 if f > 0 and Class 2 if $f \le 0$

$$f(x, W, b) = W \cdot x + b$$

$$f(x, W, b) = W \cdot x + b$$

$$f(x, W, b) = W \cdot x + b$$

