
Database Usage

(and Construction)

SQL Queries and Relational Algebra

Views

Lecture 10

String comparisons

• Normal comparison operators like < use

lexicographical order.

– ’foo’ < ’fool’ < ’foul’

• Searching for patterns in strings:

– Two special pattern characters:

• _ (underscore) matches any one character.

• % matches any (possibly empty) sequence of

characters.

string LIKE pattern

Quiz!

List all courses that have anything to do with

databases (i.e. have the word Database in

their name).

SELECT *

FROM Courses

WHERE name LIKE ’%Database%’;

The NULL symbol

• Special symbol NULL means either

– we have no value, or

– we don’t know the value

• Use with care!

– Comparisons and other operations won’t

work.

– May take up unnecessary space.

Comparing values with NULL

• The logic of SQL is a three-valued logic –

TRUE, FALSE and UNKNOWN.

• Comparing any value with NULL results in

UNKNOWN.

• A row is selected if all the conditions in the

WHERE clause are TRUE for that row, i.e.

not FALSE nor UNKNOWN.

Three-valued logic

• Rules for logic with unknowns:

– true AND unknown = unknown

– false AND unknown = false

– true OR unknown = true

– false OR unknown = unknown

– unknown AND/OR unknown = unknown

Unintuitive result

SELECT *

FROM

WHERE

Rooms

nrSeats > 10

OR nrSeats <= 10;

name nrSeats

VR NULL

Rooms

We don’t know

the value

UNKNOWN

UNKNOWN

UNKNOWN

Don’t expect the ”usual” results

• Laws of three-valued logic are not the

same as those for two-valued logic.

• Some laws hold, like commutativity of

AND and OR.

• Others do not:

p OR NOT p = true

Arithmetic in queries

• We allow arithmetic operations in queries.

SELECT weekday, hour, room, course,

nrSeats – nrStudents AS nrFreeSeats

• Not just arithmetic, but rather any

operations on values.

– Oracle has lots of pre-defined functions.

FROM Rooms,

(Lectures NATURAL JOIN GivenCourses)

name = room;WHERE

Constants

• Constants can be used in projections.

SELECT code, name,

’Database course’ AS comment

FROM

WHERE

Courses

name LIKE ’%Database%’;

code name comment

TDA357 Databases Database course

Quiz!

What will the result of this query be?

SELECT 1

FROM Courses; code name

TDA357 Databases

TIN090 Algorithms

Courses

1

1

1

For each row in Courses that passes the test (all

rows since we have no test), project the value 1.

Aggregation

• Aggregation functions are functions that

produce a single value over a relation.

– SUM, MAX, MIN, AVG, COUNT…

SELECT MAX(nrSeats)

FROM Rooms;

SELECT COUNT(*)

FROM

WHERE

Lectures

room = ’HC1’;

MAX actually has

Rooms as an implicit

argument!

Quiz!

List the room(s) with the highest number of

seats, and its number of seats.

SELECT name, MAX(nrSeats)

FROM Rooms;

NOT correct!

Error when trying to execute, why is it so?

Aggregate functions are special

• Compare the following:

– The ordinary selection/projection results in a
relation with a single attribute nrSeats, and
one row for each row in Rooms.

– The aggregation results in a single value, not
a relation.

– We can’t mix both kinds in the same query!
(almost…more on this later)

SELECT MAX(nrSeats)

FROM Rooms;

SELECT nrSeats

FROM Rooms;

name nrSeats

HC1 105

HC2 115

VR 230

HA1 146

HA4 152

SELECT nrSeats

FROM Rooms;

nrSeats

105

115

230

146

152

MAX(nrSeats)

230

SELECT MAX(nrSeats)

FROM Rooms;

nrSeats

230

SELECT MAX(nrSeats) AS nrSeats

FROM Rooms;

name nrSeats

HC1 105

HC2 115

VR 230

HA1 146

HA4 152

Quiz! New attempt

List the room(s) with the highest number of seats,
and its number of seats.

Not correct either, will list all rooms, together with
the highest number of seats in any room.

Let’s try yet again…

SELECT name,

(SELECT

FROM

MAX(nrSeats)

Rooms)

FROM Rooms;

SELECT name,

(SELECT MAX(nrSeats)

FROM Rooms)

FROM Rooms;

name nrSeats

HC1 105

HC2 115

VR 230

HA1 146

HA4 152

name nrSeats

HC1 230

HC2 230

VR 230

HA1 230

HA4 230

Quiz! New attempt

Still not correct, MAX(nrSeats) is not a test over a

row so it can’t appear in the WHERE clause!

Let’s try yet again…

List the room(s) with the highest number of seats,

and its number of seats.

SELECT name, nrSeats

FROM

WHERE

Rooms

nrSeats = MAX(nrSeats);

Quiz!

List the room(s) with the highest number of

seats, and its number of seats.

SELECT name, nrSeats

FROM Rooms

WHERE nrSeats =

(SELECT MAX(nrSeats)

FROM Rooms);

That’s better!

Single-value queries

• If the result of a query is known to be a

single value (like for MAX), the whole

query may be used as a value.

SELECT name, nrSeats

• Dynamic verification, so be careful…

FROM

WHERE

Rooms

nrSeats =

(SELECT MAX(nrSeats)

FROM Rooms);

NULL in aggregations

• NULL never contributes to a sum, average

or count, and can never be the maximum

or minimum value.

• If there are no non-null values, the result

of the aggregation is NULL.

Next time, Lecture 7

More Relational Algebra and SQL

