
Database Construction

and Usage

SQL DDL and DML

Relational Algebra

Lecture 8

Queries:

SQL and Relational Algebra

Querying

• To query the database means asking it for

information.

– ”List all courses that have lectures in room

VR”

• Unlike a modification, a query leaves the

database unchanged.

SQL

• SQL = Structured Query Language

– The querying parts are really the core of SQL.

The DDL and DML parts are secondary.

• Very-high-level language.

– Specify what information you want, not how to

get that information (like you would in e.g.

Java).

• Based on Relational Algebra

”Algebra”

• An algebra is a mathematical system

consisting of:

– Operands: variables or values to operate on.

– Operators: symbols denoting functions that

operate on variables and values.

Relational Algebra

• An algebra whose operands are relations

(or variables representing relations).

• Operators representing the most common

operations on relations.

– Selecting rows

– Projecting columns

– Composing (joining) relations

Selection

• Selection = Given a relation (table),

choose what tuples (rows) to include in the

result.

– Select the rows from relation T that satisfy

condition C.

– σ = sigma = greek letter s = selection

σC(T) SELECT * FROM T WHERE C;

Example:

GivenCourses =

SELECT *

FROM

WHERE

GivenCourses

course = ’TDA357’;

Result =

course per teacher

TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

TIN090 1 Devdatt Dubhashi

course per teacher

TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp
What?

Example:

GivenCourses =

SELECT *

FROM

WHERE

GivenCourses

course = ’TDA357’;

Result =

course per teacher

TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

TIN090 1 Devdatt Dubhashi

course per teacher

TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

Projection

• Given a relation (table), choose what

attributes (columns) to include in the

result.

– Select the rows from table T that satisfy

condition C, and project columns X of the

result.

– π = pi = greek letter p = projection

πX(σC(T)) SELECT X FROM T WHERE C;

Example:

GivenCourses =

SELECT course, teacher

FROM

WHERE

GivenCourses

course = ’TDA357’;

Result =

course per teacher

TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

TIN090 1 Devdatt Dubhashi

course teacher

TDA357 Niklas Broberg

TDA357 Graham Kemp
What?

Example:

GivenCourses =

SELECT course, teacher

FROM

WHERE

GivenCourses

course = ’TDA357’;

Result =

course per teacher

TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

TIN090 1 Devdatt Dubhashi

course teacher

TDA357 Niklas Broberg

TDA357 Graham Kemp

The confusing SELECT

Example:

GivenCourses =

SELECT course, teacher

FROM GivenCourses;

Result =

course per teacher

TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

TIN090 1 Devdatt Dubhashi

course teacher

TDA357 Niklas Broberg

TDA357 Graham Kemp

TIN090 Devdatt Dubhashi

What?

The confusing SELECT

Example:

GivenCourses =

SELECT course, teacher

FROM GivenCourses;

Result =

course per teacher

TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

TIN090 1 Devdatt Dubhashi

course teacher

TDA357 Niklas Broberg

TDA357 Graham Kemp

TIN090 Devdatt Dubhashi

Quiz: SELECT is a projection??

Mystery revealed!

SELECT course, teacher

FROM GivenCourses;

• In general, the SELECT clause could be seen as

corresponding to projection, and the WHERE

clause to selection (don’t confuse the naming

though).

πcode,teacher(σ(GivenCourses))

= πcode,teacher(GivenCourses)

Quiz!

• What does the following expression

compute?

SELECT *

FROM

WHERE

Courses, GivenCourses

teacher = ’Niklas Broberg’;

course per teacher

TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

TIN090 1 Devdatt Dubhashi

code name

TDA357 Databases

TIN090 Algorithms

Courses
GivenCourses

FROM Courses, GivenCourses

code name course per teacher

TDA357 Databases TDA357 3 Niklas Broberg

TDA357 Databases TDA357 2 Graham Kemp

TDA357 Databases TIN090 1 Devdatt

Dubhashi

TIN090 Algorithms TDA357 3 Niklas Broberg

TIN090 Algorithms TDA357 2 Graham Kemp

TIN090 Algorithms TIN090 1 Devdatt

Dubhashi

WHERE teacher = ’Niklas

Broberg’

code name course per teacher

TDA357 Databases TDA357 3 Niklas Broberg

TDA357 Databases TDA357 2 Graham Kemp

TDA357 Databases TIN090 1 Devdatt

Dubhashi

TIN090 Algorithms TDA357 3 Niklas Broberg

TIN090 Algorithms TDA357 2 Graham Kemp

TIN090 Algorithms TIN090 1 Devdatt

Dubhashi

Answer:

The result is all rows from Courses combined in all

possible ways with all rows from GivenCourses, and

then keep only those where the teacher attribute is

Niklas Broberg.

code name course per teacher

TDA357 Databases TDA357 3 Niklas Broberg

TIN090 Algorithms TDA357 3 Niklas Broberg

SELECT *

FROM

WHERE

Courses, GivenCourses

teacher = ’Niklas Broberg’;

Cartesian Products

• The cartesian product of relations R1 and

R2 is all possible combinations of rows

from R1 and R2.

– Written R1 x R2

– Also called cross-product, or just product

SELECT *

FROM

WHERE

Courses, GivenCourses

teacher = ’Niklas Broberg’;

σteacher = ’Niklas Broberg’(Courses x GivenCourses)

Quiz!

List all courses, with names, that Niklas Broberg is

responsible for.

Courses(code,name)

GivenCourses(course,per,teacher)

course -> Courses.code

SELECT *

FROM

WHERE

Courses, GivenCourses

teacher = ’Niklas Broberg’

AND code = course;

code name course per teacher

TDA357 Databases TDA357 3 Niklas Broberg

code = course

code name course per teacher

TDA357 Databases TDA357 3 Niklas Broberg

TDA357 Databases TDA357 2 Graham Kemp

TDA357 Databases TIN090 1 Devdatt

Dubhashi

TIN090 Algorithms TDA357 3 Niklas Broberg

TIN090 Algorithms TDA357 2 Graham Kemp

TIN090 Algorithms TIN090 1 Devdatt

Dubhashi

Not equal

Joining relations

• Very often we want to join two relations on the

value of some attributes.

– Typically we join according to some reference, asin:

SELECT *

• Special operator ⋈C for joining relations.

FROM

WHERE

Courses, GivenCourses

code = course;

R1 ⋈C R2 = σC(R1 x R2)

SELECT *

FROM R1 JOIN R2 ON C;

Example

SELECT *

FROM Courses JOIN GivenCourses

ON code = course;

course per teacher

TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

TIN090 1 Devdatt Dubhashi

code name

TDA357 Databases

TIN090 Algorithms

Courses
GivenCourses

code name course per teacher

TDA357 Databases TDA357 3 Niklas Broberg

TDA357 Databases TDA357 2 Graham Kemp

TIN090 Algorithms TIN090 1 Devdatt Dubhashi

Natural join

• ”Magic” version of join.

– Join two relations on the condition that all

attributes in the two that share the same

name should be equal.

– Remove all duplicate columns

– Written R1 ⋈R2 (like join with nocondition)

Example

SELECT *

FROM Courses NATURAL JOIN GivenCourses;

code per teacher

TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

TIN090 1 Devdatt Dubhashi

code name

TDA357 Databases

TIN090 Algorithms

Courses
GivenCourses

code name per teacher

TDA357 Databases 3 Niklas Broberg

TDA357 Databases 2 Graham Kemp

TIN090 Algorithms 1 Devdatt Dubhashi

Sets or Bags?

• Relational algebra formally applies to sets
of tuples.

• SQL, the most important query language
for relational databases is actually a bag
language.

– SQL will eliminate duplicates, but usually only
if you ask it to do so explicitly.

• Some operations, like projection, are much
more efficient on bags than sets.

Sets or Bags?

A B

1 2

5 6

1 3

R(A,B)

SELECT A

FROM R

A

1

5

1

Relational

Algebra

πA(R)

A

1

5

Bag Set

(no repeating values)

SQL

