
Database design

Special Relations

Lecture 5

Subclassing and weak entities

SPECIAL RELATIONSHIPS

Subclassing

• Subclass = sub-entity = special case.

• A subclass is a subset of an entity set.

• More attributes and/or relationships.

• A subclass shares the key of its parent.

• Drawn as an entity connected to the superclass

by a special triangular relationship called ISA.

Triangle points to superclass.

– ISA = ”isa”

Example:

– A computer room is a room.

– Not all rooms are computer rooms.

– Computer rooms share the extra property that
they have a number of computers.

Coursename

code

teacher

Room

name

#seatsClassesIn

ComputerRoom #computers

ISA

Subclass/Superclass Hierarchy

• We assume that subclasses form a tree

hierarchy.

– A subclass has only one superclass.

– Several subclasses can share the same

superclass.

• E.g. Computer rooms, lecture halls, chemistry labs

etc. could all be subclasses of Room.

Translating ISA to relations

• Standard approach:

– An ISA relationship is a standard one-to-

”exactly one” relationship. Each

subclass becomes a relation with the

key attributes of the superclass

included.

– Also known as the E-R approach.

The E-R approach:

Room

name

#seats

ComputerRoom

#computers

ISA

Rooms(name, #seats)

ComputerRooms(name, #computers)

name -> Rooms.name

name #seats

VR 216 name #computers

ED6225 26
ED6225 52

What?

The E-R approach:

Room

name

#seats

ComputerRoom

#computers

ISA

Rooms(name, #seats)

ComputerRooms(name, #computers)

name -> Rooms.name

name #seats

VR 216

ED6225 52

name #computers

ED6225 26

Alternate ISA translations

• Two alternate approaches

– NULLs: Join the subclass(es) with the

superclass. Entities that are not part of the

subclass use NULL for the attributes that

come from the subclass.

– Object-oriented: Each subclass becomes a

relation with all the attributes of the

superclass included. An entity belongs to

either of the two, but not both.

The NULLs approach:

Room

name

#seats

ComputerRoom

#computers

ISA

Rooms(name, #seats, #computers)

name #seats #computers

VR 216 NULL

ED6225 52 26

What?

The NULLs approach:

Room

name

#seats

ComputerRoom

#computers

ISA

Rooms(name, #seats, #computers)

name #seats #computers

VR 216 NULL

ED6225 52 26

The object-oriented (OO) approach:

Room

name

#seats

ComputerRoom

#computers

ISA

Rooms(name, #seats)

ComputerRooms(name, #seats,

#computers)

name #seats

VR 216

name #seats #computers

ED6225 52 26

What?

The object-oriented (OO) approach:

Room

name

#seats

ComputerRoom

#computers

ISA

Rooms(name, #seats)

ComputerRooms(name, #seats,

#computers)

name #seats

VR 216

name #seats #computers

ED6225 52 26

Comparison – E-R

• E-R approach
– Always works.

– Use unless you have a good reason not to.

Comparison – OO

• OO approach
– Good when searching for general information

about entities in a subclass only.
• ”List the number of seats in all computer rooms”

– Does not work if superclass has any
relationships.

• An entity belonging to the subclass does not
belong to the superclass as well, so foreign keys
would have no single table to refer to.

Comparison – NULLs

• NULLs approach
– Could save space in situations where most

entities in the hierarchy are part of the
subclass (e.g. most rooms have computers in
them).

– Reduces the need for joins.

– Not suited if subclass has any relationships.
• Would lose the constraint that only the entities in

the subclass can participate in the relationship.

Weak entities

• Some entities depend on other entities.

– A course is an entity with a code and a name.

– A course does not have a teacher, rather it
has a teacher for each time the course is
given.

– We introduce the concept of a given course,
i.e. a course given in a particular period. A
given course is a weak entity, dependent on
the entity course. A given course has a
teacher.

Weak entities

• A weak entity is an entity that depends on

another entity for help to be ”uniquely” identified.

– E.g. an airplane seat is identified by its number, but is

not uniquely identified when we consider other

aircraft. It depends on the airplane it is located in.

• Drawn as a rectangle with double borders.

• Related to its supporting entity by a supporting

relationship, drawn as a diamond with double

borders. This relationship is always many-to-

”exactly one”.

Weak entities in E-R diagrams

Example:

GivenCourse

teacher

Room

name

#seatsLecturesIn

Course

code

name

period

Given

discriminator

(sometimes

dotted line)

Courses(code, name)

GivenCourses(course, period, teacher)

course -> Courses.code

LecturesIn(course, period, room)

(course, period) -> GivenCourses.(course, period)

room -> Rooms.name

Rooms(name, #seats)

What?

Translating to relations:

GivenCourse

teacher

Room

name

#seatsLecturesIn

Course

code

name

period

Given

Translating to relations:

GivenCourse

teacher

Courses(code, name)

GivenCourses(course, period, teacher)

course -> Courses.code

LecturesIn(course, period, room)

(course, period) -> GivenCourses.(course, period)

room -> Rooms.name

Rooms(name, #seats)

Room

name

#seatsLecturesIn

Course

code

name

period

Given

Multiway relationships as WEs

• Multiway relationships can be transformed

away using weak entities

– Subtitute the relationship with a weak entity.

– Insert supporting relationships to all entities

related as ”many” by the original relationship.

– Insert ordinary many-to-one relationships to

all entities related as ”one” by the original

relationship.

Example:

Coursename

code

teacher

Room

name

#seatsLecturesIn

Weekday

day

Room

name

#seats

On

Of

Coursename

code

teacher

Weekday

day

LectureIn

In

What’s the point?

• Usually, relationships work just fine, but in

some special cases, you need a weak

entity to express all multiplicity constraints

correctly.

• A weak entity is needed when a part of an

entity’s key is a foreign key.

“Multivalued” attributes and “flag” attributes

THINGS NOT TO DO…

”Multivalued” attributes

Course

code

name teacher

Courses(code,name)

HeldBy(code,teacher)

code -> Courses.code

Course

code

name

teacher

Teacher

HeldBy

Courses(code,name)

Teachers(teacher)

HeldBy(code,teacher)

code -> Courses.code

teacher -> Teachers.teacher

”Multivalued” attributes

• Inflexible if you later want more attributes on

teachers.

• No guarantees against e.g. spelling errors of

teacher names.

– less flexible to insert a constraint on what values are

allowed than to use an extra table.

• Tables are cheap – references are cheap

– No reason NOT to use an entity.

• Rule of thumb: Don’t use multivalued attributes!!

”Flag” attributes on relationships

Course

code

name

teacher

Teacher

HeldByresponsible

Course

code

name

teacher

Teacher

ResponsibleAssistant

vs.

”Flag” attributes on relationships

• Less intuitively clear.

• Inflexible if later you need more roles.

• Tables are cheap, union of two tables is a cheap

operation (O(1)) – filtering can be expensive (O(n))!

• Only benefit: automatic mutual exclusion (a teacher can

only be either responsible or an assistant).

– If important, can be recovered via assertions (costly).

• Rule of thumb: Don’t use flag attributes on relationships!

ER cheatsheet 3

ISA

Subclassing

sub-entity extends super-entity

- ER-approach
- NULL-approach

- OO-approach

Weak entities, identifying

relationship

Weak entity “is part of”

entity

- Composite key with
foreign key

“multivalued” attributes

Yes/no

“flag” attributes on

relationships

Don’t do this

